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Lecturer
• Prof Dr Marko Robnik-Šikonja

• University of Ljubljana
Faculty of Computer and Information Science
Head of Machine Learning and Language Technlogies Lab

• FRI, Večna pot 113, 2nd floor, room 2.06, to the right from the elevator

• marko.robnik@fri.uni-lj.si

• https://fri.uni-lj.si/en/employees/marko-robnik-sikonja

• (01) 4798 241

• Contact hours (see the webpage)

• currently, Wednesdays, 11:00 - 12:00; please, email me; other times or Zoom meeting are possible

• Research interests: artificial intelligence, machine learning, natural language processing, network analytics, data 
science

• Teaching: courses from areas of machine learning, natural language processing, and problem solving

• Software and resources: supporting open science, author of several open source ML packages, many large 
language models, and language resources
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Assistants

• Dr Tadej Škvorc

• Timotej Knez, PhD student

• Boshko Koloski, PhD student

• tutorials, assignments, work in Python

• please, prepare questions!
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Syllabus
• nature inspired computing (genetic algorithms, genetic programming)

• basics of machine learning,

• bias, variance, generalization error, and overfitting

• representation learning and feature selection

• neural networks

• natural language processing

• ensemble methods

• kernel methods

• automated machine learning

• transformers for tabular data and time series

• model inference and explanation

• reinforcement learning
5



Objectives
1. students shall become acquainted with 

• nature inspired computing
• machine learning 

• predictive modeling approaches
• model selection and evaluation techniques
• model comprehensibility and explanation
• practical application of predictive modeling in python

• natural language processing
• reinforcement learning

2. practical use of theoretical knowledge on (almost) real-world problems ;
for a given prediction problem students shall be able to
• transform it to a form suitable for predictive modeling
• select and train an appropriate predictive model
• evaluate the model and present the results in a comprehensible form and language

3. awareness of domain expertise and ethical issues in data science

4. increase the (mental) problem-solving toolbox with 
• predictive modeling techniques 
• evolutionary optimization approaches
• large language models
• reinforcement learning
• experiment design, result understanding, visualization, and explanation approaches
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• difference between different types of machine 
learning models

• properties of models: bias, variance, 
generalization, hypothesis language

• properties of the following models: kNN, 
decision rules, bagging, boosting, random 
forests, stacking, SVM, neural networks

• properties and purpose of evaluation 
approaches and metrics: cross-validation, 
bootstrapping, ROC curves, sensitivity, specificity 
etc.

• When and how to apply AutoML techniques

• inference methods for predictive methods and 
explanation of predictions

• when and why to apply reinfocement learning

• how to prepare and process text 

• when and how and to optimize a problem using 
evolutionary algorithms

• visualize datasets and created models

• prepare data into a suitable form for 
modeling algorithms

• apply classification and regression models 
to solve a prediction task with a given data 
set 

• build natural language classifier

• estimate error of models using statistically 
valid approaches 

• select models and tune their parameters 
using cross-validation and bootstrapping

• apply AutoML techniques

• visualize models and explain their 
predictions

• given a new dataset, select an appropriate 
modeling technique and evaluate the 
created model

7

Be able to explain
Build and evaluate models in Python



Syllabus explained
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Nature inspired computing

• genetic algorithms

• genetic programming

• neuro-evolution
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Introduction to statistical predictive modelling 

• Learning as modelling: data, evidence, background knowledge, 
predictive models, hypotheses, learning as optimization, learning as 
search, criteria of success, inductive learning, generalization.

• Classification and regression: supervised and unsupervised learning, 
learning discrete and numeric functions, learning relations, learning 
associations.

• Simple classification models: nearest neighbor, decision rules
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Model selection 
• Bias and variance: error decomposition, trade-off, estimating bias and 

variance

• Generalization performance: training and testing set error, cross-
validation, evaluation set, bootstrapping.

• Performance measures: confusion matrix, sensitivity and specificity, 
ROC curves, AUC, cost-based classification.

• Parameter tuning: regularization, search

• AutoML
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Kernel methods

• SVM for classification and regression: kernels, support vectors, 
hyperplanes.

• SVM for more than two classes: one vs. one, one vs. all.
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Ensemble methods 

• Model averaging, why ensembles work.

• Tree based ensembles: bagging, boosting, random forests.

• MARS and AODE ensembles.

• Stacking, mixture of experts.
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Neural networks 

• perceptron, 

• backpropagation, 

• setting structure of networks

• deep neural networks

• transformer architecture

• autoencoders

• GANs

• neural embedings and representation learning
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Explaining prediction models 

• Model comprehensibility, visualization and knowledge discovery.

• General methodology for explaining predictive models.

• Model level and instance level explanations, methods SHAP, LIME, 
EXPLAIN, and IME.
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Learning with special settings

• imbalanced data, 

• multi-task learning, 

• multi-label learning,

• Etc.
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Natural language processing

• text preprocesing

• text representation

• text similarity

• text classification

• sentiment analysis

• generative models



Reinforcement learning

• basics

• Markov decision problem

• Q learning

• Deep RL
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Course organisation
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Obligations

• 5 quizzes

• Two projects, 50 points

• Written exam, 50 points
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Grading

Obligation % of total subject to
Five quizzes 0% ≥ 50% alltogether
Projects 50% ≥ 50% each
Written exam 50% ≥ 50%
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Learning materials

• Learning materials in Moodle

• Slides

• Quizzes

• Links and other materials
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Readings (all freely available)

• James, G., Witten, D., Hastie, T., Tibshirani, R. and Taylor, J., 2023. An Introduction to Statistical 
Learning: With Applications in Python. New York: Springer. (also exists for R)

• Chollet, F. and Watson, M., 2025. Deep Learning with Python, 3rd edition. Manning. 

Further readings:

• Jurafsky, Daniel and James, Martin (2025): Speech and Language Processing, 3rd edition in progress

• Richard S. Sutton and Andrew G. Barto: Reinforcement Learning, An Introduction, 2nd edition, MIT 
Press, 2018

• Kevin P. Murphy: Probabilistic Machine Learning: An Introduction. MIT Press, 2022

• Kevin P. Murphy: Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023

• Friedman, J., Hastie, T., & Tibshirani, R., 2009). The elements of statistical learning, 2nd edition. Springer, 
Berlin

• scientific papers

• many excellent machine learning and data science courses on Coursera, edX etc.
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Retention of learning
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Data Science is a part of Intelligent Systems

• good job perspective

• many jobs in this area regularly occupy list of the most promising jobs 

• Thomas H. Davenport, D.J. Patil: Data Scientist: The Sexiest Job of the 21st 
Century. Harvard Business Review, October 2012
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Intelligent systems and media

Will robots destroy us?

Will they take our jobs?

Will we still need a driving licence?

Will we still need doctors?

How will humanoid robots evolve?

What about cyborgs?

What is artificial general intelligence?

What is technological singularity?

28



New prophets of tehnological singularity
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Some scientific opinions

• Rodney Brooks: The Seven Deadly Sins of Predicting the Future of AI. 
https://rodneybrooks.com/the-seven-deadly-sins-of-predicting-the-future-
of-ai/ also in MIT Technology Review

•  Marko Robnik-Šikonja: Is artificial intelligence a (job) killer?. The 
Conversation, Jul. 2017 https://theconversation.com/is-artificial-
intelligence-a-job-killer-80473 

• …
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Short history of optimism 
• starting in 1950s,

1956 Dartmouth conference

• great expectations, enormous underestimation

of problem difficculty

• AI winter (2 x)

1958, H. A. Simon and Allen Newell: “… within ten years a digital computer will discover 
and prove an important new mathematical theorem.”

1965, H. A. Simon: “… machines will be capable, within twenty years, of doing any work a 
man can do.”

1967, Marvin Minsky: "Within a generation ... the problem of creating 'artificial 
intelligence' will substantially be solved.”

1970, Marvin Minsky: "In from three to eight years we will have a machine with the 
general intelligence of an average human being."

31
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Hype Cycle for Artificial intelligence, 2025
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Hype Cycle for Emerging Technologies, 2024



Nature 
inspired
computing
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Contents

 Introduction to evolutionary  computation

 Genetic algorithms

 Genetic algorithms and automatic code 
generation



Evolutionary and natural computation

 Many engineering and computational ideas from nature work 
fantastically!

 Evolution as an algorithm

 Abstraction of the idea:

 progress, adaptation - learning, optimization

 Survival of the fittest - competition of agents, programs, solutions

 Populations – parallelization

 (Over)specialization – local extremes

 Neuro-evolution, evolution of robots, evolution of novelty

 revival of interest



Template of evolutionary program

generate a population of agents (objects, data structures)

do {

     compute fitness (quality) of the agents
select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

 immensely general -> many variants



A result of successful evolutionary 
program



Main approaches to nature inspired computing

 Genetic algorithms

 Genetic programming

 Differential evolution

 Swarm methods (particles, ants, bees, …)

 Physics methods: simulated annealing

 etc.



Genetic Algorithms  - GA

 Pioneered by John Holland in the 1970’s

 Got popular in the late 1980’s

 Based on ideas from Darwinian evolution

 Can be used to solve a variety of problems that 
are not easy to solve using other techniques

 Revival of interest in connection with 
neuroevolution



Chromosome, Genes and Genomes

• Only a weak analogy to GA



Genome representation

 Bit vector

 Numeric vectors

 Strings

 Permutations

 Trees: functions, expressions, programs

 ...



Crossover

 Single point/multipoint

 Shall preserve individual objects



Crossover: bit representation

Parents:     1101011100   0111000101

Children:   1101010101    0111001100



Crossover: vector representation

Simplest form

Parents:   (6.13, 4.89, 17.6, 8.2) (5.3, 22.9, 28.0, 3.9)

Children: (6.13 , 22.9, 28.0, 3.9)  (5.3, 4.89, 17.6, 8.2) 

In reality: linear combination of parents



Linear crossover

 The linear crossover simply takes a linear 
combination of the two individuals.

 Let x = (x1,…xN) and y = (y1,…yN)

 Select α  in (0, 1)

 The results of the crossover is α x + (1- α)y .

 Possible variation: choose a different α for each 
position.



Linear crossover example

 Let α = 0.75 and we have two individuals:

A = (5, 1, 2, 10) and B = (2, 8, 4, 5)

 then the result of the crossover is α A + (1- α) B 

(3.75 + 0.5, 0.75 + 2, 1.5 + 1, 7.5 + 1.25) = (4.25, 2.75,2.5, 8.75)

 If we use the variation and we have α = (0.5, 0.25, 0.75, 
0.5), the result is:

(2.5 + 1, 0.25 + 6, 1.5 + 1, 5 + 2.5) = (3.5, 6.25, 2.5, 7.5)



Crossover: trees



Permutations: travelling salesman 
problem

 9 cities: 1,2 ..9

 bit representation using 4 bits?

 0001 0010 0011 0100 0101 0110 0111 1000 1001

 crossover would give invalid genes

 permutations and ordered crossover

 keep (part of) sequences

 use the sequence from second cut, keep already existing

1 9 2 | 4 6 5 7 | 8 3    →  x x x | 4 6 5 7 | x x     2 3 9 | 4 6 5 7 | 1 8 

4 5 9 | 1 8 7 6  | 2 3   →  x x x | 1 8 7 6  | x x    3 9 2 | 1 8 7 6 | 4 5 



A demo: Eaters
 Plant eaters are simple organisms, moving around in a 

simulated world and eating plants

 Fitness function: number of plants eaten

 An eater sees one square in front of its pointed end; it sees 4 
possible things: another eater, plant, empty square or the wall

 Actions: move forward, move backward, turn left, turn right

 It is not allowed to move into the wall or another eater

 Internal state: number between 0 and 15

 The behavior is determined by the 64 rules encoded in its 
chromosome; one rule for each of 16 states x 4 observations; 
one rule is a pair (action, next state)

 The chromosome therefore consists of length 64 x (4+2) bits = 
384 bits

 Crossover and mutation



Gray coding of binary numbers

 Keeping similarity

 Similar object shall have 
similar genome



Adaptive crossover

 Different evolution phases

 Crossover templates

 0 – first parent, 1 second parent

 Possibly different dynamics of template 
crossover



Mutation

 Adding new information

 Binary representation:
 0111001100 --> 0011001100

 Single point/multipoint

 Random search?

 Lamarckian (searching for locally best mutation)



Lamarckianism
Lamarckism is the hypothesis that an organism can 
pass on characteristics that it has acquired through 
use or disuse during its lifetime to its offspring. 



Gaussian mutation

 When mutating one gene, selecting the new 
value by choosing uniformly among all the 
possible values is not the best choice
(empirically).

 The mutation selects a position in the vector of 
floats and mutates it by adding a Gaussian error: 
a value extracted according to a normal 
distribution with the mean 0 and the variance 
depending on the problem.



Template of evolutionary program

generate a population of agents (objects, data structures)

do {

     compute fitness (quality) of the agents
select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

 immensely general -> many variants



Evolutional model  - who will reproduce

 Keep the good

 Prevent premature convergence

 Assure heterogeneity of population



Selection

 Proportional

 Rank proportional

 Tournament

 Single tournament

 Stochastic
universal sampling



Proportional and rank based selection 
example

Agent Fitness pprop Cumprop Rank prank Cumprop

A 12 0.200 0.200 4 0.190 0.190

B 5 0.083 0.283 2 0.095 0.286

C 20 0.333 0.617 6 0.286 0.571

D 7 0.117 0.733 3 0.143 0.714

E 15 0.250 0.983 5 0.238 0.952

F 1 0.017 1.000 1 0.049 1.000

Sum 60 1.000 21 1.000



Roullete wheels for the proportional 
and rank based selection example

Agent Fitness pprop Cumprop Rank prank Cumprop

A 12 0.200 0.200 4 0.190 0.190

B 5 0.083 0.283 2 0.095 0.286

C 20 0.333 0.617 6 0.286 0.571

D 7 0.117 0.733 3 0.143 0.714

E 15 0.250 0.983 5 0.238 0.952

F 1 0.017 1.000 1 0.049 1.000

Sum 60 1.000 21 1.000



Tournament selection

 Several variants of tournaments

Probabilistic tournaments

1. set t=size of the tournament,
       p=probability of a choice

2. randomly sample t agents from population forming a tournament

3. select the best with probability p 

4. select second best with probability p(1-p)

5. select third best with probability p(1-p)2

6. ...

End when the mating pool is large enough



Replacement

 All 

 According to the fitness (roulette, rank, 
tournament, randomly)

 Elitism (keep a portion of the best)

 Local elitism (children replace parents if they are 
better)



Single tournament selection

1. randomly split the population into small groups

2. apply crossover to two best agents from each 
group; their offspring replace two worst agents 
from the group

 advantage: in groups of size g the best g-2 progress 
to next generation (we do not loose good agents, 
maximal quality does not decrease)

 no matter the quality even the best agents have no 
more than two offspring (we do not loose 
population diversity)

 Computational load? Speed?



Population size

 small, large?

 Considerations?



Niche specialization

 evolutionary niches are generally undesired

 punish too similar agents

 modify fitness

 f’i = fi /q(i)  

 q(i) = { 1                ; sim(i) <=4, 
      sim(i)/4    ; otherwise },

where sim(i) is the number of very similar agents 
to agent i



Stopping criteria

 number of generations, tracking of progress, 
availability of computational resources, 
leaderboard, mutability heuristics, etc.



Checkboard example

 We are given an n by n checkboard in which every field 
can have a different colour from a set of four colors.

 Goal is to achieve a checkboard in a way that there are 
no neighbours with the same color (not diagonal)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10



Checkboard example Cont’d

 Chromosomes represent the way the checkboard is colored.

 Chromosomes are not represented by bitstrings but by 
bitmatrices

 The bits in the bitmatrix can have one of the four values 0, 1, 2 or 
3, depending on the color.

 Crossover involves matrix manipulation instead of point wise 
operating. 

 Crossover can combine the parential matrices in a horizontal, 
vertical, triangular or square way.

 Mutation remains bitwise  - changing bits

 Fitness function: check 2n(n-1) violations



Checkboard example Cont’d

• Fitness curves for different cross-over rules:
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Why genetic algorithms work?

 building blocks hypothesis

 ... is controversial (mutations)

 sampling based hypothesis



Parameters of GA

 Encoding (into fixed length strings)

 Length of the strings;

 Size of the population;

 Selection method;

 Probability of performing crossover (pc );

 Probability of performing mutation (pm);

 Termination criteria (e.g., a number of generations, a 
leaderboard mutability, a target fitness).



Usual settings of GA parameters

 Population size: from 20–50 to a few thousands 
individuals;

 Crossover probability: high (around 0.9);

 Mutation probability: low (below 0.1).



Demo: find genome of 
a biomorph

 A biomorph is a graphic configuration generated from nine genes. 

 The first eight genes each encode a length and a direction. 

 The ninth gene encodes the depth of branching. 

 Each gene is encoded with five bits. 

 The four first bits represent the value, the fifth its sign. 

 Each gene can get a value from -15 to +15. 

 value of gen nine is limited to 2-9.

 There are : 8 (number of possible depths) x 240 (the 8 * 5 =40 bits encoding basic genes) = 
8.8 x1012 possible biomorphs. If we were able to test 1000 genomes every second, we would 
need about 280 years to complete the whole search.

 At the beginning, the drawing algorithm being known, we get the image of a biomorph. 
The only data directly measurable are the positions of branching points and their number. 
The basic algorithm simulates the collecting of these data.

 Fitness function: the distance of the generated biomorph from the target one. 



Applications

 optimization

 scheduling

 bioinformatics, 

 machine learning

 planning

 multicriteria optimization



Where to use evolutionary algorithms?

 Many local extremes

 Just fitness, without derivations

 No specialized methods

 Multiobjective optimization

 Robustness

 Combined with other approaches



Multiobjective optimization

 Fitness function with several objectives

 Cost, energy, environmental impact, social 
acceptability, human friendliness

 min F(x)=min (f1(x), f2(x), ..., fn(x))

 Pareto optimal solution: we cannot improve one 
criteria without getting worse on others

 GA: in reproduction, use all criteria



An example: 
smart buildings

 simple scenario: heater, accumulator, solar 
panels, electricity from grid

 criteria: price, comfort of users (as the difference 
in temperature to the desired one)

 chromosome: shall encode schedule of charging 
and discharging the battery, heating on/off

 operational time is discretized to 15min intervals



Control problem for smart buildings

Parameters:
• the price of energy from the grid varies during the 

day
• the prediction of solar activity
• schedule of heater and battey
• usual activities of a user



Smart building: structure of the 
chromosome

 temperature: for each interval we set the desired 
temperature between Tmin and Tmax interval

 battery+: if photovoltaic panels produce enough 
energy we set: 1 charging, 0 no charging

 battery-: if photovoltaic panels do not produce 
enough energy, we set: 1 battery shall discharge, 
0 battery is not used

 appliances: each has its schedule when it is used 
(1) and when it is off (0)



Example of schedule



Example of solutions and optimal front



Strengths and weaknesses

 robust, adaptable, general
 requires only weak knowledge of the problem (fitness 

function and representation of genes)
 several alternative solutions
 hybridization and parallelization
 faster and less memory than exhaustive or random 

search
 little effort to try

 suboptimal solutions
 possibly many parameters
 may be computationally expensive

 no-free-lunch theorem



Neuroevolution: evolving neural 
networks

• Evolving neurons and/or topologies



Neuroevolution

 Evolving neurons: not really necessary but 
attempted

 Evolving weights instead of backpropagation and 
gradient descent

 Evolving the architecture of neural network 

 For small nets, one uses a simple matrix representing which 
neuron connects which.

 This matrix is, in turn, converted into the necessary 'genes', 
and various combinations of these are evolved.

 We shall review this after learning about neural 
networks



Statistical Predictive Modeling
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Learning

• Learning is the act of acquiring new, or modifying and reinforcing existing, 
knowledge, behaviors, skills, values, or preferences
and may involve synthesizing different types of information. 

• Statistical learning deals with the problem of finding a predictive function 
based on data.

• The primary goals of statistical learning: prediction and understanding.

• Many different learning settings and data types, rapidly spreading in many 
areas of science, technology, and analytics, e.g., the Nobel prize in physics 
in 2024 to Hopfield and Hinton
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Statistics and machine learning
• Definition from Wikipedia: 

ML algorithms operate by building a model from example inputs i.e., 
samples.

• ML can also be viewed as compression 3
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Basic notation of predictive modelling
• Cancer recurrence is a statistical variable named response or target or prediction variable that we 

wish to predict. We usually refer to the response as Y .

• Other input variables are called attributes, features, inputs, or predictors; we name them  X.j

• One observation, called also an instance or example is denoted as Xi,.

• The input vectors form a matrix X

• The model we write as 

where ∈ is independent of X, has zero mean and represents measurement errors and other 
discrepancies. 9



Further notation  for instances and attributes

• Suppose we observe 𝑌𝑖 and 𝑋𝑖 = 𝑥𝑖,1, 𝑥𝑖,2, … 𝑥𝑖,𝑝 for 𝑖 = 1,2, …𝑛

• We believe that there is a relationship between Y and X.

• We can model the relationship as

• Where f is an unknown function and ε is a random error with mean zero.

• Take care, the notation may be confusing, we also use  

10
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A simple example
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A simple example
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Different standard deviations of error
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• The difficulty of 
estimating f will 
depend on the 
standard deviation 
of the ε’s.
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Different 
estimates for f
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Income vs. Education and  Seniority
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Multidimensional X



1st goal of learning: prediction

• If we can produce a good estimate for f (and the variance of ε is not 
too large), we can make accurate predictions for the response, Yi, 
based on a new value of Xi.

• Example: Direct Mailing Prediction
• Interested in predicting how much money an individual will donate based on 

observations from 90,000 people on which we have recorded over 400 
different characteristics.

• Don’t care too much about each individual characteristic. 

• Just want to know: For a given individual should I send out a mailing?

16



2nd goal of learning: inference

• often we are interested in the type of relationship between Y and all the X.j

• For example, 
• Which particular predictors actually affect the response? 
• Is the relationship positive or negative? 
• Is the relationship a simple linear one or is it more complicated, etc.?
• For a given (Xi., Yi), which feature values xij are the most important to determine yi?

• Sometimes more important than prediction, e.g., in medicine.

• Example: Housing Inference
• Wish to predict median house price based on 14 variables.
• Probably want to understand which factors have the biggest effect on the response 

and how big the effect is.
• For example, how much impact does a river view have on the house value etc. 

17



How do we estimate f?

• We will assume we have observed a set of training data

• We must then use the training data and a statistical method to estimate f.

• Statistical Learning Methods: 
• Parametric Methods

• Non-parametric Methods

18
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Parametric methods

• They reduce the problem of estimating f down to one of estimating a set of parameters.

• They involve a two-step model-based approach

STEP 1:

Make some assumption about the functional form of f, i.e. come up with a model. The 
most common example is a linear model, i.e.

More complicated and flexible models for f are often more realistic.

STEP 2:

Use the training data to fit the model, i.e. estimate f or equivalently the unknown 
parameters such as β0, β1, β2,…βp

For linear model the most common method uses ordinary least squares (OLS).
19
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Example: a linear regression estimate

20

• Even if the 
standard 
deviation is low, 
we will still get a 
bad answer if 
we use the 
wrong model.

f = b0 +b1´Education+b2 ´Seniority



Non-parametric methods

• They do not make explicit assumptions about the functional form of f.

• Advantage: They accurately fit a wider range of possible shapes of f.

• Disadvantage: A large number of observations may be required to 
obtain an accurate estimate of f¸.

21



Example: a thin-plate spline estimate

22

• Non-linear regression 
methods are more 
flexible and can 
potentially provide 
more accurate 
estimates.



Trade-off between prediction accuracy and 
model interpretability
• Why not just use a more flexible method if it is more realistic?

Reason 1:

A simple method such as linear regression produces a model which is much easier to 
interpret (the inference part is better). For example, in a linear model, βj is the 
average increase in Y for a one unit increase in Xj holding all other variables constant.

Reason 2:

Even if you are only interested in prediction, so the first reason is not relevant, it is 
often possible to get more accurate predictions with a simple, instead of a 
complicated, model. This seems counter intuitive but has to do with the fact that it is 
harder to fit a more flexible model.

23



A poor estimate: overfitting

24

• Non-linear 
regression 
methods can 
also be too 
flexible and 
produce poor 
estimates for f.



Goodness of fit for three models

25

RIGHT
RED: Test MSE
Grey: Training MSE
Dashed:  Minimum possible 
test MSE (irreducible error)

LEFT
Black: Truth
Orange: Linear Estimate
Blue:  smoothing spline 
Green:  smoothing spline 
(more flexible)



Supervised, unsupervised, semi-supervised, self-supervised, 
weakly-supervised learning  1/2
• We can divide learning problems into Supervised and Unsupervised situations

• Supervised learning:

• Supervised Learning is where both the predictors, Xi, and the response, Yi, are observed.

• e.g., linear regression

• Unsupervised learning:

• In this situation only the Xi’s are observed. 

• We need to use the Xi’s to guess what Y would have been and build a model from there.

• A common example is market segmentation where we try to divide potential customers into groups 
based on their characteristics.

• A common approach is clustering.

• Idea: Maximizing initra-cluster similarity & minimizing inter-cluster similarity

• Semi-supervised learning

• only a small sample of labelled instances are observed but a large set of unlabeled instances

• an initial supervised model is used to label unlabeled instances

• the most reliable predictions are added to the training set for the next iteration of supervised 
learning 26



A simple clustering example 

27



Supervised, unsupervised, semi-supervised, self-supervised, 
weakly-supervised learning  2/2

• Self-supervised learning
• a mixture of supervised and unsupervised learning

• learns from unlabeled data 

• the labels are obtained from related properties of the data itself, often leveraging the underlying 
structure in the data

• usually predicts any unobserved or hidden part (or property) of the input from any observed or 
unhidden part of the input. 

• e.g., in NLP, we can hide part of a sentence and predict the hidden words from the remaining words

• e.g., in video processing, we can predict past or future frames in a video (hidden data) from current 
ones (observed data)

• Weakly-supervised data
• noisy, limited, or imprecise sources are used to provide supervision signal for labeling large amounts 

of training data to do supervised learning 

• reduces the burden of obtaining hand-labeled data sets, which can be costly or impractical

• e.g., using a smart electricity meter to estimate household occupancy

28



Regression vs. classification

• Supervised learning problems can be further divided into

• Regression problems: Y is continuous/numerical. e.g.

• Predicting the value of certain share on stock market

• Predicting the value of a given house based on various inputs

• The duration in years till cancer recurrence

• Classification problems: Y is categorical, e.g.,

• Will the price of a share go up (U) or down (D)?

• Is this email a SPAM or not?

• Will the cancer recur?

• What will be an outcome of a football match (Home, Away, or Draw)?

• Credit card fraud detection, direct marketing, classifying stars, diseases,  web-
pages, etc.

• Note that we mostly predict probabilities of the categories

• Some methods work well on both types of problem, e.g., neural networks or kNN 29



Data mining (analytics, science): on what kinds of data?

• Database-oriented data sets and applications

• Relational database, data warehouse, transactional database

• Advanced data sets and advanced applications 

• Data streams and sensor data

• Time-series data, temporal data, sequence data (incl. bio-sequences) 

• Structure data, graphs, social networks and multi-linked data

• Object-relational databases

• Heterogeneous databases and legacy databases

• Spatial data and spatiotemporal data

• Multimedia database

• Text databases

• The World-Wide Web

30



Association and correlation analysis

• Frequent patterns (or frequent itemsets)

• What items are frequently purchased together in the 

supermarket?

• Association, correlation vs. causality

• A typical association rule

• Diaper → Beer [0.5%, 75%]  (support, confidence)

• Are strongly associated items also strongly correlated?

• How to mine such patterns and rules efficiently in large datasets?

• How to use such patterns for classification, clustering, and other 

applications?
31



Outlier analysis

• Outlier: A data object that does not comply with the general behavior of 

the data

• Noise or exception? ― One person’s garbage could be another person’s 

treasure

• Methods: byproduct of clustering or regression analysis, …

• Useful in fraud detection, rare events analysis

32



Relational learning

33

• Several variants: 
• Bayesian networks, 
• inductive logic programming
• graph learning, e.g., link prediction



Generalization as a search

• So far, we presented the “learning as an optimization” ML view

• Inductive learning: find a concept description that fits the data

• Example: rule sets as description language
• Enormous but finite search space

• Simple solution:
• enumerate the concept space

• eliminate descriptions that do not fit examples

• surviving descriptions contain target concept

34



Learning as optimization

• Usually the goal of classification is to minimize the test error

• Therefore, many learning algorithms solve optimization problems, e.g., 
• linear regression minimizes squared error on the training set

• AntMiner algorithms minimize the classification accuracy of decision rules on the 
training set using ACO

• to find a good architecture of neural networks, GAs can be applied and minimize the 
prediction error on the validation set

• most learning methods use optimization algorithms to minimize the implicitly or 
explicitly stated loss function, e.g., cross-entropy in neural network is minimized with 
gradient descent, where cross-entropy is a distance between two distributions, the 
predicted P and the true Q: 𝐻 𝑃,𝑄 = σ𝑥∈𝑋 𝑝(𝑥) log 𝑞(𝑥)

35



Criteria of success for ML
• No single best ML method (no free lunch theorem)

• How to select the best model?
• measure the quality of fit, i.e. how well the predictions match the observed data
• measure on previously unseen data (called test set). Why? Can we do it many times?

• In regression, the most popular measure is the mean squared error

𝑀𝑆𝐸 =
1

𝑛
෍

𝑖=1

𝑛

(𝑦𝑖 − 𝑓(𝑥𝑖))
2

where 𝑦𝑖 is the true (observed) value of instance i, and 𝑓(𝑥𝑖) is its predicted value

• in classification, the classification accuracy = 1 – error rate is the most popular criterion

𝐶𝐴 =
1

𝑛
෍

𝑖=1

𝑛

𝐼(𝑦𝑖 = 𝑓(𝑥𝑖))

where 𝑓(𝑥𝑖) is the predicted category

• We will say more about this topic later

36



37

No-Free-Lunch theorem
• In the "no free lunch" metaphor, 

each "restaurant" (problem-solving procedure) 
has a "menu" associating 
each "lunch plate" (problem) 
with a "price" (the performance of the procedure in solving the problem). 

• The menus of restaurants are identical except in one regard – the prices are 
shuffled from one restaurant to the next. 

• For an omnivore who is as likely to order each plate as any other, the average 
cost of lunch does not depend on the choice of restaurant. 

• But a vegan who goes to lunch regularly with a carnivore who seeks economy 
might pay a high average cost for lunch. 

• To methodically reduce the average cost, one must use advance knowledge of 

• a) what one will order and 

• b) what the order will cost at various restaurants. 

• That is, improvement of performance in problem-solving hinges on using prior 
information to match procedures to problems.
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Consequences of the 
NFL theorem

If no information about the target
function f(x) is provided:

• No classifier is better than some 
other in the general case.

• No classifier is better than random
in the general case.

• ML practitioners possess implicit or explicit 
knowledge about the prices in different 
restaurants

• Meta-learning
• Automatic ML (AutoML)
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• Bias and variance of prediction models

• Bayes optimal classifier

• Simple regression models: 

• linear models, nearest neighbor, regression trees, regression rules

• Simple classification models: 

• nearest neighbor, naïve Bayes, decision trees, decision rules, logistic 
regression

• Biases in data
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A generalization problem

• Our ML methods have generally been designed to make error small
on the training data, e.g., with linear regression, we choose the line
such that MSE is minimized.

• What we really care about is how well the method generalizes i.e.
how well it works on new data. We call this new data “Test data”.

• There is no guarantee that the method with the smallest training
error will have the smallest test (i.e. new data) error.

• One approach to address the problem is to reserve a portion of the
training data to measure the generalization error, we this dataset
“evaluation dataset”. We use this dataset during training to guide the
learning process, e.g., to stop it. This approach is used especially with
overparametrized methods such as neural networks and in learning
settings with high likelihood of overfitting such as AutoML methods.

3



Training vs. test error

• In general the more flexible a method is the lower its training MSE
will be, i.e. it will “fit” or explain the training data very well.
• More flexible methods (such as splines) can generate a wider range of

possible shapes to estimate f as compared to less flexible and more restrictive
methods (such as linear regression). The less flexible the method, the easier
to interpret the model. Thus, there is a trade-off between flexibility and
model interpretability.

• However, the test MSE may in fact be higher for a more flexible
method than for a simple approach like linear regression.

4



Different levels of flexibility: example 1

5

LEFT
Black: Truth
Orange: Linear Estimate
Blue:  smoothing spline 
Green:  smoothing spline (more 
flexible)

RIGHT
RED: Test MS
Grey: Training MSE
Dashed:  Minimum possible test 
MSE (irreducible error)



Different levels of flexibility: example 2

6

RIGHT
RED: Test MSE
Grey: Training MSE
Dashed:  Minimum possible test MSE 
(irreducible error)

LEFT
Black: Truth
Orange: Linear Estimate
Blue:  smoothing spline
Green:  smoothing spline (more 
flexible)



Different levels of flexibility: example 3

7

LEFT
Black: Truth
Orange: Linear Estimate
Blue:  smoothing spline
Green:  smoothing spline (more flexible)

RIGHT
RED: Test MSE
Grey: Training MSE
Dashed:  Minimum possible test MSE 
(irreducible error)



Bias - variance trade-off

• The previous graphs of test versus training MSE’s illustrates a very important
trade-off that governs the choice of statistical learning methods.

• There are always two competing forces that govern the choice of learning
method, i.e. bias and variance.

8



Bias of learning methods

• Bias in general: inclination or prejudice for or against one person or group, especially in a 
way considered to be unfair.

• Bias in ML refers to the error that is introduced by modeling a real-life problem (that is
usually extremely complicated) by a much simpler problem.

• A common definition of  bias: 

Bias = E[Y]-f(x)

• For example, linear regression assumes that there is a linear relationship between Y and
X. It is unlikely that, in real life, the relationship is exactly linear so some bias will be
present.

• The more flexible/complex a method is the less bias it will generally have.

9



Variance of learning methods

• Variance refers to how much your estimate for f would change if you had a
different training data set.

• A common definition of  variance: 

Var = E[(Y - E[Y])2]

• Generally, the more flexible a method is, the more variance it has.

10



Bias-variance illustration
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The trade-off?

• It can be shown that for any given, X=x0, the expected test MSE for a new Y at x0
will be equal to

where Bias = E[Y]-f(x) and Var = E[(Y - E[Y])2]

• What this means is that as a method gets more complex 
• the bias will decrease and 
• the variance will likely increase 
• but expected test MSE may go up or down!

• The trade-off is only present if we assume fixed error!

• For some models there may be no trade-off!

12
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Test MSE, 
bias and 
variance
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Bayes classifier

• In classification, the optimal classification for an instance (x0, y0) can
be obtained by selecting the class j which maximizes the probability

P(Y = j|X = x0)

• This classifier is called the Bayes (optimal) classifier

• It implies that learning is actually an estimation of the conditional 
data distribution 

14



Bayes error rate

▪ The Bayes error rate refers to the lowest possible error rate that could
be achieved if somehow we knew exactly what the “true” probability
distribution of the data looked like.

▪ On test data, no classifier (or statistical learning method) can get
lower error rates than the Bayes error rate.

▪ Of course, in real life problems, the Bayes error rate can’t be
calculated exactly (why not?) but it is useful to think about it

15



Bayes optimal
classifier
• for new x0 returns the 

maximally probable 
prediction value 
P(Y=y | X=x0)

• this means to select 
the class j with
arg maxj P(Y=yj|X=x0)

• Why is this probability 
not easy to estimate?

• The dotted line show 
the Bayes decision 
boundary, where 
P(Y=y | X=x0) = 0.5

16



Bayes classifier approximations

• Two models can be viewed as directly approximating the Bayes 
classifier P(Y = j|X = x0)

• Naive Bayesian classifier
• uses Bayesian formula to get inverse conditional probabilities

• assuming conditional independence between features 

• Nearest neighbour classifier
• directly estimates the conditional probability using instances near to x0

17



K-Nearest Neighbors (KNN)

• k Nearest Neighbors is a flexible approach to estimate the Bayes
classifier.

• For any given x we find the k closest neighbors to x in the training
data, and examine their corresponding y.

• If the majority of the y’s are orange, we predict the orange label
otherwise the blue label.

• The smaller that k is the more flexible the method will be.

18



KNN example with k = 3

19



K-NN classifier

• Given a positive integer K and a test observation x0, the KNN classifier 
first identifies the K points in the training data that are closest to x0, 
represented by the set 𝒩0.

• It then estimates the conditional probability for class j as the fraction 
of points in 𝒩0 whose response values equal j:

• applies Bayes rule and classifies the test observation x0 to the class 
with the largest probability.

20



Simulated data: 
K = 10

21



K = 1 and K = 100
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Training vs. test error rates on the simulated data

• Notice that training 
error rates keep 
going down as k 
decreases or 
equivalently as the 
flexibility increases.

• However, the test 
error rate at first 
decreases but then 
starts to increase 
again. 
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A fundamental picture
• In general training errors 

will always decline.

• However, test errors will 
decline at first (as 
reductions in bias 
dominate) but will then 
start to increase again (as 
increases in variance 
dominate).

• This is a conventional 
wisdom, but it is not true 
for all methods and all 
training regimes.

24



The double descent curve
• While for some models, like kNN, there seem to be a trade-off 

between bias and variance, this is not a universal phenomenon

• E.g., overparametrization in neural networks produce double descent 
curve (similar evidence for random forests) 

25
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K-nearest neighbor for regression

• kNN regression is similar to the kNN classifier.

• given a set of instances (xi, yi)

• To predict y for a given value of x, consider k closest points to x in 
training data Nk(x) and take the average of the responses. i.e.

𝑓(𝑥) =
1

𝑘
෍

𝑥𝑖∈𝑁𝑘(𝑥)

𝑦𝑖
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KNN Fits for k =1 and k = 9
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KNN fits in one dimension (k =1 and k = 9)

• black line: actual function,

• blue line: regressional kNN
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Choice of k in KNN

• If k is small, kNN is much more flexible than linear regression.

• Is that better?

• The results may be highly dependent on
the choice of k.

30



Example: two moons 
dataset 

• Non-linear decision 
boundary
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KNN is not so good in high dimensional 
situations

32



Speeding up KNN algorithm 

• precondition: normalization of dimensions, e.g., to [0, 1]

• naive search for nearest neighbors: O(n·d·t)

• n is number of instances

• d is number of dimensions

• t is number of nearest neighbors 

• exact search for low dimensional spaces

• k-d trees (d is around 10)

• quad-trees (d=2), octrees (d=3)

• R-tree  (rectangular tree, also R+, R*, ...), d=2 or 3

• approximate search

• RKD-tree (random k-d tree) 

• locally sensitive hashing (LSH), 

• hierarchical k-means



Word bias have several meanings

1. General / Everyday Meaning

• Preference or prejudice toward or against something or someone, often in an unfair way.
• Example: “The judge must avoid bias in court.”
• → Synonyms: partiality, favoritism, prejudice.

• Tendency to lean in a certain direction, consciously or unconsciously.
• Example: “She has a bias toward traditional art styles.”

2. Social and Psychological Context

• Cognitive bias: A systematic pattern of deviation from rational judgment or objective standards.
• Example: confirmation bias (favoring information that confirms one’s beliefs).

• Social bias: Prejudice or discrimination based on group characteristics (e.g., gender, race, culture).
• Example: “Hiring practices should be checked for gender bias.”

3. Statistics & Machine Learning

• Statistical bias: Systematic error that leads an estimator or model to deviate from the true value.
• Example: “The sample mean is an unbiased estimator of the population mean.”

• Bias–variance tradeoff: In machine learning, bias refers to the error introduced by simplifying assumptions in a model.
• High bias → model underfits the data.
• Low bias → model can better capture complexity.

34



Ethical consideration of social and cognitive 
bias in ML models
• The word bias is ambiguous even within ML

• bias in models: 
• characteristic of models, 

• affects error, 

• unlikely to be ethically problematic

• when it can be problematic?

• bias in data: 
• data unrepresentative of the true population, 

• might be ethically problematic

35



Biases in the data

• Machine learning models are not inherently objective. Engineers train 
models by feeding them a data set of training examples, and human 
involvement in the provision and curation of this data can make a model's 
predictions susceptible to bias.

• When building models, it's important to be aware of common human 
biases that can manifest in your data, so you can take proactive steps to 
mitigate their effects.

• The biases listed next provide just a small selection of biases that are often 
uncovered in machine learning data sets; this list is not intended to be 
exhaustive. Wikipedia's catalog of cognitive biases enumerates over 100 
different types of human bias that can affect our judgment. When auditing 
your data, you should be on the lookout for any and all potential sources of 
bias that might skew your model's predictions. 
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Reporting bias

• Reporting bias occurs when the frequency of events, properties, 
and/or outcomes captured in a data set does not accurately reflect 
their real-world frequency. This bias can arise because people tend to 
focus on documenting circumstances that are unusual or especially 
memorable, assuming that the ordinary can "go without saying."
• EXAMPLE: A sentiment-analysis model is trained to predict whether book 

reviews are positive or negative based on a corpus of user submissions to a 
popular website. The majority of reviews in the training data set reflect 
extreme opinions (reviewers who either loved or hated a book), because 
people were less likely to submit a review of a book if they did not respond to 
it strongly. As a result, the model is less able to correctly predict sentiment of 
reviews that use more subtle language to describe a book.
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Automation bias

• Automation bias is a tendency to favor results generated by 
automated systems over those generated by non-automated systems, 
irrespective of the error rates of each (we also have the opposite bias)
• EXAMPLE: Software engineers working for a sprocket manufacturer were 

eager to deploy the new "groundbreaking" model they trained to identify 
tooth defects, until the factory supervisor pointed out that the model's 
precision and recall rates were both 15% lower than those of human 
inspectors. 
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Selection bias
• Selection bias occurs if a data set's examples are chosen in a way that is not reflective 

of their real-world distribution. 
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Selection bias variants

• Selection bias can take many different forms:
• Coverage bias: Data is not selected in a representative fashion.

• EXAMPLE: A model is trained to predict future sales of a new product based on phone surveys 
conducted with a sample of consumers who bought the product. Consumers who instead opted to buy a 
competing product were not surveyed, and as a result, this group of people was not represented in the 
training data. 

• Non-response bias (or participation bias): Data ends up being unrepresentative 
due to participation gaps in the data-collection process.
• EXAMPLE: A model is trained to predict future sales of a new product based on phone surveys 

conducted with a sample of consumers who bought the product and with a sample of consumers who 
bought a competing product. Consumers who bought the competing product were 80% more likely to 
refuse to complete the survey, and their data was underrepresented in the sample. 

• Sampling bias: Proper randomization is not used during data collection.
• EXAMPLE: A model is trained to predict future sales of a new product based on phone surveys 

conducted with a sample of consumers who bought the product and with a sample of consumers who 
bought a competing product. Instead of randomly targeting consumers, the surveyor chose the first 200 
consumers that responded to an email, who might have been more enthusiastic about the product than 
average purchasers. 40
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Group attribution bias
• Group attribution bias is a tendency to generalize what is true of 

individuals to an entire group to which they belong. Two key 
manifestations of this bias are:
• In-group bias: A preference for members of a group to which you also 

belong, or for characteristics that you also share.
• EXAMPLE: Two engineers training a resume-screening model for software 

developers are predisposed to believe that applicants who attended the same 
computer-science academy as they both did are more qualified for the role. 

• Out-group homogeneity bias: A tendency to stereotype individual 
members of a group to which you do not belong, or to see their 
characteristics as more uniform.
• EXAMPLE: Two engineers training a resume-screening model for software 

developers are predisposed to believe that all applicants who did not attend a 
computer-science academy do not have sufficient expertise for the role. 
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Implicit bias
• Implicit bias occurs when assumptions are made based on one's own 

mental models and personal experiences that do not necessarily 
apply more generally. We are often not aware of these biases, and 
some may be contrary to our conscious beliefs.
• EXAMPLE: An engineer training a gesture-recognition model uses a head shake as a feature 

to indicate a person is communicating the word “no.” However, in some regions of the world, 
a head shake actually signifies “yes.” A common form of implicit bias is confirmation bias, 
where model builders unconsciously process data in ways that affirm preexisting beliefs and 
hypotheses. In some cases, a model builder may actually keep training a model until it 
produces a result that aligns with their original hypothesis; this is called an experimenter's 
bias.

• EXAMPLE: An engineer is building a model that predicts aggressiveness in dogs based on a 
variety of features (height, weight, breed, environment). The engineer had an unpleasant 
encounter with a hyperactive toy poodle as a child, and ever since has associated the breed 
with aggression. When the trained model predicted most toy poodles to be relatively docile, 
the engineer retrained the model several more times until it produced a result showing 
smaller poodles to be more violent. 43
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45

Good question — measuring bias and variance of a machine learning method on a specific dataset is a core diagnostic step to understand its generalization behavior.

Here’s a clear and practical breakdown of how to measure bias and variance in this context:

1. Conceptual background
For a given data point ( x ), a model’s prediction can be decomposed as:

[

\mathbb{E}\big[(\hat{y}(x) - y(x))^2\big]

= \text{Bias}^2(x) + \text{Variance}(x) + \text{Irreducible Error}.

]

Where:

•Bias measures how far the average prediction of the model is from the true value.

•Variance measures how much predictions fluctuate when the model is trained on different samples of the dataset.

•Irreducible error is noise inherent in the data.

In practice, we approximate these quantities by resampling the dataset, training multiple models, and analyzing prediction statistics.

2. Practical steps to measure bias and variance
Let’s assume:

•Dataset ( D ) with inputs ( X ) and true targets ( y ).

•Learning algorithm ( \mathcal{A} ).

•Number of resampling rounds ( M ) (e.g. 30–100).
Step 1: Generate multiple training sets

•Use bootstrapping or k-fold splits to create ( M ) training sets ( D_1, D_2, \ldots, D_M ) of the same size.
Step 2: Train models
For each ( D_m ), train the model ( f_m = \mathcal{A}(D_m) ).

Step 3: Collect predictions

Evaluate all models on a fixed test set (or out-of-bag data):

[

\hat{y}_m(x_i) = f_m(x_i),

]

for each data point ( x_i ) and model ( m ).
Step 4: Compute mean prediction and error
[

\bar{y}(x_i) = \frac{1}{M}\sum_{m=1}^M \hat{y}m(x_i)

]

[

\text{Bias}^2(x_i) = \big(\bar{y}(x_i) - y(x_i)\big)^2

]

[

\text{Variance}(x_i) = \frac{1}{M}\sum{m=1}^M \big(\hat{y}_m(x_i) - \bar{y}(x_i)\big)^2

]
Step 5: Average across all data points
[

\text{Bias}^2 = \frac{1}{N}\sum_{i=1}^N \text{Bias}^2(x_i)

]

[

\text{Variance} = \frac{1}{N}\sum_{i=1}^N \text{Variance}(x_i)

]

3. Implementation tip (Python / pseudocode)

import numpy as np from sklearn.utils import resample from sklearn.metrics import mean_squared_error M = 50 # number of bootstrap samples predictions = [] for _ in range(M): X_train, y_train = resample(X, y) model = Model().fit(X_train, y_train) y_pred = model.predict(X_test) predictions.append(y_pred) predictions = np.array(predictions) # shape: (M, N_test) y_mean = np.mean(predictions, axis=0) bias2 = np.mean((y_mean - y_test)**2) variance = np.mean(np.var(predictions, axis=0)) total_error = mean_squared_error(y_test, y_mean) 

4. For classification problems

•The same procedure applies, but the loss function should match the task:

•0–1 loss for simple error rate.

•Cross-entropy loss for probabilistic classifiers.

•Bias and variance are typically computed per class or per example and then averaged.

5. Practical considerations
•Choose ( M ) large enough (30–100) to get stable variance estimates.

•Use a held-out test set for evaluation to avoid optimistic bias.

•For deep models, training multiple times can be expensive — use smaller subsamples or Monte Carlo dropout for an approximate variance estimate.

•Bias–variance trade-off can be visualized by plotting bias², variance, and total error as a function of model complexity (e.g., tree depth, regularization strength).

6. Interpretation

•High bias, low variance: underfitting — model is too simple.

•Low bias, high variance: overfitting — model is too sensitive to training data.

•Low bias, low variance: good fit (ideal region).

•Tracking bias and variance across model complexity helps with model selection and regularization tuning.

In summary:

To measure bias and variance of an ML method on a dataset:

1.Resample the data many times.

2.Train multiple models.

3.Compute mean predictions, squared bias, and variance at each test point.

4.Average across the dataset.

5.Interpret results to guide model design and complexity.
Would you like me to adapt this method specifically for your use case (e.g. regression vs classification, neural nets vs tree models, or exoplanet time series)?



Revision question:
How to measure bias and 

variance of an ML method?



Background

• For a given data point 𝑥0,a model’s prediction can be decomposed as:

• 𝔼[൫ ො𝑦 𝑥0 − 𝑦 𝑥0 )2] = Bias2 𝑥0 + Variance 𝑥0 + Irreducible Error.

• Bias: error due to simplifying assumptions

• Variance: sensitivity to training set fluctuations

• Key idea: use resampling or cross-validation to estimate bias and variance



Practical steps 1/3

• Generate M training sets (bootstrap or k-fold)

• Train models on each set

• Collect predictions on a fixed test set for all models:
ො𝑦𝑚 𝑥𝑖 = 𝑓𝑚 𝑥𝑖 ,

for each data point 𝑥𝑖 and model 𝑚.



Practical steps 2/3
• Compute mean prediction, bias² and variance per point

𝑦
ˉ
𝑥𝑖 =

1

𝑀
෍

𝑚=1

𝑀

ො𝑦𝑚 𝑥𝑖

Bias2 𝑥𝑖 = (𝑦
ˉ
𝑥𝑖 − 𝑦 𝑥𝑖 )

2

Variance 𝑥𝑖 =
1

𝑀
෍

𝑚=1

𝑀

( ො𝑦𝑚 𝑥𝑖 − 𝑦
ˉ
𝑥𝑖 )

2



Practical steps 3/3
• Average across all test data points

Bias2 =
1

𝑁
෍

𝑖=1

𝑁

Bias2 𝑥𝑖

Variance =
1

𝑁
෍

𝑖=1

𝑁

Variance 𝑥𝑖

•



Implementation

• Use bootstrapping or multilevel cross-validation to train multiple 
models; compute bias and variance

• Use M = 30–100 for stable estimates



Interpretation

• High bias, low variance → underfitting

• Low bias, high variance → overfitting

• Low bias, low variance → good fit

• Plot bias² and variance vs model complexity for insights
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• Data preprocessing

• Feature subset selection: filter, wrapper and embedded methods

• Feature creation: constructive induction

• Feature selection extensions: unsupervised and semi-supervised learning, multi-
task, multi-view, multi-label learning

• Model evaluation

• Dimensionality reduction
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First steps in ML

• The data preparation step is seriously underestimated 
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Data preprocessing
• Data cleansing: removing or correcting records that have corrupted or invalid values from raw data, and removing records 

that are missing a large number of columns.

• Instances selection and partitioning: selecting data points from the input dataset to create training, evaluation 
(validation), and test sets. This process includes techniques for repeatable random sampling, minority class oversampling, 
and stratified partitioning.

• Feature tuning: improving the quality of a feature for ML, which includes scaling and normalizing numeric values, 
imputing missing values, clipping outliers, and adjusting values that have skewed distributions.

• Feature transformation: converting a numeric feature to a categorical feature (through discretization), or converting 
categorical features to a numeric representation (through one-hot encoding, sparse and dense feature embeddings). 
Some models work only with numeric or categorical features, while others can handle mixed-type features. Even when 
models handle both types, they can benefit from different representations (numeric and categorical) of the same feature.

• Feature extraction: reducing the number of features by creating lower-dimension, more powerful data representations 
using techniques such as PCA, embedding extraction, and hashing.

• Feature selection: selecting a subset of the input features for training the model, and ignoring the irrelevant or redundant 
ones, using filter or wrapper methods. Feature selection can also involve simply dropping features if the features are 
missing a large number of values.

• Feature construction: creating new features by using different operators, such as logical, arithmetical, trigonometrical, 
etc. Features can also be constructed by using domain knowledge, e.g., business logic from the domain of the ML use 
case.

• For unstructured data: often only modest preprocessing is needed for neural networks

• text: casing, tokenization, embedding lookup/calculation

• images: resizing, cropping, filters.
4



Why Reduce Dimensionality?

• Reduces time complexity: Less computation

• Reduces space complexity: Less parameters

• Potentially saves the cost of observing the feature

• Simpler models are more robust on small datasets

• More interpretable; simpler explanation

• Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 
dimensions

5



Feature subset selection

• Choose a small subset of the relevant features from the original 
features by removing irrelevant, redundant and/or noisy features

• The aim: better learning performance, i.e. higher learning accuracy, 
lower computational cost, or better model interpretability

6



Huge number of features

• Text classification, ≈ 100,000 words in a dictionary

• Bioinformatics, ≈ 10,000 measurements of gene expression levels

• Computer vision, ≈ 1,000,000 pixels

7



Evaluation of attributes

•  Numerical evaluation and ranking of the attributes

• The success of the evaluation procedure depends on the role it plays in learning:
• feature subset selection

• building of the tree-based models 

• constructive induction

• discretization

• attribute weighting

• comprehension

• prediction

• etc.

 

attribute 

evaluation 
attr. description   

of the problem 

quality 

evaluation 



Attribute description

color weight shape size sort

red 12 round middle apple

yellow 20 conic large pear

red 15 round tiny apple

green 8 round small pear

yellow 22 conic large apple

mixed 12 conic small apple

green 15 round middle apple

mixed 8 round tiny apple

yellow 6 round small pear

9

▪ nominal attributes: ordered and unordered

▪ numeric attributes



Feature evaluation

• in order to select attributes, we have to evaluate (rank) them

• the success of feature evaluation is measured through the success of 
downstream tasks, i.e. learning 

• an example: feature evaluation in decision tree building

• in each interior node of the tree an attribute is selected which 
determines split of the instances

• the attributes are evaluated to ensure useful split

10



Three types of feature selection methods

• Filter methods: independent on learning algorithm, select the most 
discriminative features through a criterion based on the character of 
data, e.g. information gain and ReliefF

• Wrapper methods: use the intended learning algorithm to evaluate 
the features, e.g., progressively add features to SVM while 
performance increases

• Embedded method select features in the process of learning

11



Feature selection: Filter methods

12



Heuristic measures for attribute evaluation

• Impurity based
• information theory based (information gain, gain ratio, distance measure, J-measure)

• probability based: Gini index, DKM, classification error on the training set

• MDL

• statistics G, 2

• mean squared and mean absolute error (MSE, MAE)

• assume conditional independence (upon label) between the attributes

• Context sensitive measures: 
• Relief, Contextual Merit, 

• random forests or boosting based attribute evaluation, 

13



Information gain

• measure the purity of label distribution before and after the split  

• impurity = entropy

• each attribute is evaluated independently from others

𝐼(𝜏) = −෍

𝑖=1

𝑐

𝑝(𝜏𝑖) log2 𝑝 (𝜏𝑖)

𝐼(𝜏|𝐴) = −෍

𝑗=1

𝑣𝐴

𝑝(𝑣𝑗)෍

𝑖=1

𝑐

𝑝(𝜏𝑖|𝑣𝑗) log2 𝑝 (𝜏𝑖|𝑣𝑗)

𝐼𝐺(𝐴) = 𝐼(𝜏) − 𝐼(𝜏|𝐴)
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Multivalued and numeric attributes 

15

• multivalued: 
insufficient 
statistical support 
in certain splits

• numeric: 
sometimes 
requires prior 
discretization



Attribute interactions
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• criterion: evaluate attribute according to its power of separation 
between near instances 

• values of good attribute should distinguish between near 
instances from different class and have similar values for near 
instances from the same class

Relief algorithms
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Relief algorithms

• no assumption of conditional independence

• context sensitive

• reliable also in problems with strong conditional dependencies

• included in several machine learning systems (e.g., Weka, Orange, scikit-
learn, R)

• Relief (Kira in Rendell, 1992): two class classification
• ReliefF (Kononenko, 1994): multi-class classification
• RReliefF (Robnik Šikonja in Kononenko, 1997): regression

Marko Robnik-Šikonja, Igor Kononenko: Theoretical and Empirical Analysis of ReliefF and RReliefF. 
Machine Learning Journal, 53:23-69, 2003 
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Algorithm Relief

Input:  set of instances <xi, i>   

Output: the vector W of  attributes’ evaluations  
 

set all weights W[A] := 0.0; 

for i := 1 to m do begin 

randomly select an instance R; 

find nearest hit H and nearest miss M;  

for A := 1 to #all_attributes do 

W[A] := W[A] - diff(A,R,H)/m + diff(A,R,M)/m;  

end; 



 for nominal attributes

diff(𝐴, 𝐼1, 𝐼2) =
0; value(𝐴, 𝐼1) = value(𝐴, 𝐼2)
1; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

diff(𝐴, 𝐼1, 𝐼2) =
value(𝐴, 𝐼1) − value( 𝐴, 𝐼2)

max( 𝐴) − min( 𝐴)

𝛿(I1,I2) =෍

𝑖=1

𝑎

diff(𝑖, 𝐼1, 𝐼2)

 for numerical attributes

 distance between two instances

 unknown values of attributes

Function diff



Extension: ReliefF

• For multi-class problems

• Handles incomplete and noisy data

• More robust: uses k nearest instances from all the classes



The algorithm ReliefF

Input:  set of instances <xi, i>   

Output: the vector W of  attributes’ evaluations  
 

for v:=1 to a do Wv := 0.0; 

for i := 1 to m do begin 

randomly select an instance Ri 

find k nearest hits H  

for each class t  Ri, do  

     from class t find k nearest misses M(t) 

for v := 1 to a do 

 update Wv  according to update formula  

end; 



Update formula

𝑊𝑣 = 𝑊𝑣 −
1

𝑚
con( 𝐴𝑣 , 𝑅𝑖 , 𝐻) +

1

𝑚
෍
𝑡=1
𝑡≠𝑅𝑖,𝜏

𝑐
𝑝(𝜏𝑡) con( 𝐴𝑣 , 𝑅𝑖 , 𝑀(𝑡))

1 − 𝑝(𝑅𝑖,𝜏)

con( 𝐴𝑣 , 𝑅𝑖 , 𝑆) =
1

𝑘
෍

𝑗=1

𝑘

diff( 𝐴𝑣 , 𝑅𝑖 , 𝑆𝑗)



In regression: RReliefF

• after applying the Bayesian rule: P(A|B) = P(A)P(B|A)/P(B)

• we approximate this formula

• unified view on attribute evaluation in classification and regression

𝑊[𝐴] = =
𝑃𝑑𝐶|𝑑𝐴𝑃𝑑𝐴

𝑃𝑑𝐶
−
(1 − 𝑃𝑑𝐶|𝑑𝐴)𝑃𝑑𝐴

1 − 𝑃𝑑𝐶

𝑊[𝐴] = 𝑃(different value of 𝐴|nearest instances with different prediction)
− 𝑃(different value of 𝐴|nearest instances with same prediction)

W 𝐴 = 𝑃𝑑𝐴|𝑑𝐶 − 𝑃𝑑𝐴|¬𝑑𝐶

Marko Robnik-Šikonja, Igor Kononenko: An adaptation of Relief for attribute estimation in regression. Machine Learning, 
Proceedings of ICML 1997



Feature selection: Embedded methods
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Regularization for feature selection

• feature selection as part of learning (embedded method)

• loss function is composed of two components: prediction error and 
number/weight of included features

𝐿 𝑋, 𝑌, 𝑓 =෍

𝑖=1

𝑛

𝐼(𝑦𝑖 ≠ 𝑓 𝑥𝑖 ) + 𝜆෍

𝑗=1

𝑎

𝐼(𝐴𝑗 ∈ 𝑋)

• in regression we get similar expressions for ridge regression and lasso
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Ridge regression
• Ordinary Least Squares (OLS) estimates βs by minimizing

• Ridge regression minimizes a slightly different equation 
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Ridge regression adds a penalty on βs ! 
• The effect of this equation is to add a penalty of the form 

where the tuning parameter λ is a positive value. 

• This has the effect of “shrinking” large values of βs towards zero.

• It turns out that such a constraint should improve the fit, because shrinking the 
coefficients can significantly reduce their variance

• Notice that when λ = 0, we get the OLS!  

28



Credit data: ridge regression

• As λ increases, the standardized coefficients shrink towards zero.
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Why can shrinking towards zero be a good thing?

• It turns out that the OLS estimates generally have low bias but can be highly 
variable. In particular when n and p are of similar size or when 
n < p, then the OLS estimates will be extremely variable.

• The penalty term makes the ridge regression estimates biased  but can also 
substantially reduce variance

• Thus, there is a bias/variance trade-off

30



Ridge regression bias / variance
• Black: Bias

• Green: Variance

• Purple: MSE

• Increase of        
increases bias but 
decreases variance
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Bias  / variance trade-off

• In general, the 
ridge regression 
estimates will be 
more biased 
than the OLS 
ones but have 
lower variance

• Ridge regression 
will work best in 
situations where 
the OLS 
estimates have 
high variance

32



Computational advantages of ridge regression

• If number of features p is large, then using the best subset selection 
approach requires searching through enormous numbers of possible 
models

• With ridge regression, for any given λ, we only need to fit one model 
and the computations turn out to be very simple

• Ridge regression can even be used when p > n, a situation where OLS 
fails completely!      

33



The LASSO method

• Ridge regression isn’t perfect

• One significant problem is that the penalty term will never force any of 
the coefficients to be exactly zero. Thus, the final model will include all 
variables, which makes it harder to interpret 

• A more modern alternative is the LASSO

• The LASSO works in a similar way to ridge regression, except it uses a 
different penalty term 

34



LASSO’s Penalty Term
• Ridge Regression minimizes

• The LASSO estimates the βs by minimizing the  

35



The difference between ridge regression and lasso

• This seems like a very similar idea but there is a big 
difference.

• Using LASSO penalty, it could be proven mathematically that 
some coefficients end up being set to exactly zero.

• With LASSO, we can produce a model that has high 
predictive power and it is simple to interpret.

36



Credit data: Ridge and LASSO
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Selecting the tuning parameter λ

• We need to decide on a value for λ

• Select a grid of potential values, use cross validation to estimate the error rate 
on test data (for each value of λ) and select the value that gives the least error 
rate.

38



Feature selection: Wrapper methods
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Wrapper approach

start with an empty set of features S={} // forward selection

repeat

add all unused features one by one to S

train a prediction model with each set S

evaluate each prediction model

keep the best added feature in S

until all features are added to S

return the best set of features encountered

• high computational load but effective for a given learning model; attention to 
data overfitting

• how would backward selection differ?
40



Model evaluation
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Model evaluation metrics

• Evaluation metrics: How can we measure accuracy?  Other metrics to consider?

• Regression: MSE, MAE

• Classification:  accuracy, sensitivity, specificity, AUC, precision, recall

• Comparing classifiers:

• Mean and confidence intervals

• Cost-benefit analysis and ROC Curves

• Rank-based tests (Friedman/Nemenyi)

• Bayesian (hierarchical) tests

42



Classifier evaluation metrics: 
confusion matrix aka missclassification matrix

Actual class\Predicted 
class

buy_computer 
=  yes

buy_computer 
= no

Total

buy_computer = yes 6954 46 7000

buy_computer = no 412 2588 3000

Total 7366 2634 10000

• Given m classes, an entry, CMi,j in a confusion matrix indicates # of 
instances in class i that were labeled by the classifier as class j

• May have extra rows/columns to provide totals

Confusion Matrix:
Actual class\Predicted class C1 ¬ C1

C1 True Positives (TP) False Negatives (FN)

¬ C1 False Positives (FP) True Negatives (TN)

Example of Confusion Matrix:

43



Classification accuracy, error rate

• Classifier Accuracy (CA), or recognition rate: percentage of test set 
instances that are correctly classified

Accuracy = (TP + TN)/All

• Error rate: 1 – accuracy, or  Error rate = (FP + FN)/All

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All

44



Sensitivity and specificity

Class Imbalance Problem: 

One class may be rare, e.g. fraud, or HIV-positive

Significant majority of the negative class and minority of the positive class

Sensitivity: True Positive recognition rate

Sensitivity = TP/P

Specificity: True Negative recognition rate

Specificity = TN/N

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All
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Precision, recall and F-measures

• Precision: exactness, i.e what % of instances the classifier labeled as 
positive are actually positive
Precision = TP/P’

• Recall: completeness, i.e what % of positive instances did the 
classifier label as positive?
Recall = TP / P (the same as sensitivity)

• Perfect score is 1.0

• Inverse relationship between precision & recall
•
F measure (F1 or F-score): harmonic mean of precision and recall,

• Fß:  weighted measure of precision and recall
• assigns ß times as much weight to recall as to precision

46



Example: precision and recall 

• Precision = 90/230 = 39.13%             Recall = 90/300 = 30.00%

47

Actual Class\Predicted class cancer = yes cancer = no Total Recognition(%)

cancer = yes 90 210 300 30.00 (sensitivity)

cancer = no 140 9560 9700 98.56 (specificity)

Total 230 9770 10000 96.40 (accuracy)



Multiclass evaluation

• no problems for classification accuracy

• most other measures assume binary class, e.g., precision, recall, F1

• multiclass extensions simulate binary case

• macro average: 
• compute several one-versus-all scores and average

• assumes balanced class distribution, gives equal weight to each class

• micro average
• computes TP, FP, TN, FN for each class separately and then computes the measure

• assumes all instances are of the same importance; in case of imbalanced classes 
this might be problematic
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Multiclass example

• Let us compute precision P =TP / (TP+FP). 

• Let us assume multi-class classification system with four classes and the 
following numbers when tested:

• Class A: 1 TP and 1 FP

• Class B: 10 TP and 90 FP

• Class C: 1 TP and 1 FP

• Class D: 1 TP and 1 FP

• P(A) = P (C) =P(D) = 0.5, whereas P(B)=0.1.

• A macro-averaged precision: Pmacro = (0.5+0.1+0.5+0.5) / 4 = 0.4
• A micro-averaged precision: Pmicro = (1+10+1+1) / (2+100+2+2) = 0.123
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Error depends on decision threshold

• Example: False positive and false negative rate are computed based 
on probabilities returned by classifier

P(Class=True |X1, X2, …) ≥ 0.5

• We can change the two error rates by changing the threshold from 
0.5 to some other value in [0, 1]:

P(Class=True |X1, X2, ….) ≥ threshold

50



Varying the threshold

• To reduce false negative rate, we would chose threshold other than 0.5, e.g., threshold  ≤ 0.1
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ROC curve
• ROC curve shows both TP rate 

and FP rate simultaneously

• FPR = FP/(FP+TN)

• TPR = TP/(TP+FN)

• To summarize overall 
performance, we also use area 
under the ROC curve (AUC)

• The larger the AUC the better is 
the classifier. Why? What 
would be an ideal ROC curve?
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Model selection
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Issues affecting model selection

• Accuracy

• classification: classification accuracy, AUC, F1

• regression: MSE, MAE

• Speed

• time to construct the model (training time)

• time to use the model (classification/prediction time)

• Robustness: handling noise and missing values

• Scalability: efficiency in disk-resident databases 

• Interpretability

• understanding and insight provided by the model

• other measures, e.g., goodness of rules, such as decision tree size or compactness of 

classification rules
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Unsupervised feature selection

• criterion: preserve similarity between instances

• Example: SPEC, spectral feature selection

Zhao Z, Liu H. Spectral feature selection for supervised and unsupervised learning. In Proceedings of ICML 2007, pp. 1151-
1157. 
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Semi-supervised feature selection

• typically a small sample of labelled and a 
large sample of unlabeled data is available

• principle: use the label information of 
labeled data and data distribution or local 
structure of both labeled and unlabeled 
data to evaluate feature relevance

56
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Cheng, H., Deng, W., Fu, C., Wang, Y. and Qin, Z., 2011. Graph-based semi-supervised feature selection with application to automatic 
spam image identification. In Computer Science for Environmental Engineering and EcoInformatics (pp. 259-264). 



Stability of feature selection
• for high dimensional small sample data, the stability of feature selection is a 

pressing issue, e.g., in microarray data, we might get similar classification 
accuracy with different sets of features

• Solution: ensemble approach:
1. produce diverse feature sets

• different feature selection techniques, 
• instance-level perturbation
• feature-level perturbation
• stochasticity in the feature selector, 
• Bayesian model averaging 
• combinations of the above techniques

2. aggregate them
• weighted voting
• counting
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Dimensionality reduction
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Feature Selection vs Feature Extraction

• Feature selection: Choosing k<d important features, ignoring the 
remaining d – k
• Subset selection algorithms (Filter, Wrapper, Embedded)

• Feature extraction: Project the original 
xi , i =1,...,d dimensions to new k<d dimensions, zj , j =1,...,k
• Typical statistical techniques: Principal components analysis (PCA), linear 

discriminant analysis (LDA), factor analysis (FA)
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Feature reduction 

 approximation of p-dimensional space of matrix X with lower 

dimensional space

 also called feature extraction

 Simplest variant: Linear transformation, i.e. rotation in the direction of 

the largest variance
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Principle components analysis

 principle components analysis, PCA

we iteratively find the orthogonal axes of the largest variance

we use the new dimensions to approximate the original space
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Principal Components Analysis (PCA)

 Find a low-dimensional space such that when x is projected there, 
information loss is minimized.

 The projection of x on the direction of w is: z = wTx

 Find w such that Var(z) is maximized

Var(z) = Var(wTx) = E[(wTx – wTμ)2] 

= E[(wTx – wTμ)(wTx – wTμ)]

= E[wT(x – μ)(x – μ)Tw]

= wT E[(x – μ)(x –μ)T]w = wT ∑ w

where Var(x)= E[(x – μ)(x –μ)T] = ∑

62
See Alpaydın 2010 Introduction to Machine Learning 2e 



max
𝐰2

𝐰2
𝑇Σ𝐰2 − 𝛼 𝐰2

𝑇𝐰2 − 1 − 𝛽 𝐰2
𝑇𝐰1 − 0
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 Maximize Var(z) subject to ||w||=1

∑w1 = αw1 that is, w1 is an eigenvector of ∑

Choose the one with the largest eigenvalue for Var(z) to 

be max

 Second principal component: Max Var(z2), s.t., ||w2||=1 and orthogonal to 

w1

∑ w2 = α w2 that is, w2 is another eigenvector of ∑

and so on.

max
𝐰1

𝐰1
𝑇Σ𝐰1 − 𝛼 𝐰1

𝑇𝐰1 − 1



What PCA does

z = WT(x – m)

where the columns of W are the eigenvectors of ∑, and m is the 
sample mean

Centers the data at the origin and rotates the axes
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 Proportion of Variance (PoV) explained

when λi are sorted in descending order 

 Typically, stop at PoV>0.9

 Scree graph plots of PoV vs k, stop at “elbow”

How to choose k ?

𝜆1 + 𝜆2 +⋯+ 𝜆𝑘
𝜆1 + 𝜆2 +⋯+ 𝜆𝑘 +⋯+ 𝜆𝑑
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Neighbourhood preserving dimensionality reduction

• also called local embeddings

• SNE - Stochastic Neighbor Embedding

• t-SNE (t-distributed SNE)
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Linear and local embedding

• PCA tries to find a global structure
• Low dimensional subspace

• Can lead to local inconsistencies

• Far away point can become nearest neighbors

• t-SNE is an alternative dimensionality reduction algorithm.

• t-SNE tries to preserve local structure
• Low dimensional neighborhood should be the same as the original neighborhood.

• Unlike PCA almost only used for visualization

• No easy way to embed new points
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PCA 2d 
projection 
of MNIST 
dataset
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t-SNE 2d 
projection 
of MNIST 
dataset
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Stochastic Neighbor Embedding (SNE)

• SNE basic idea:
• ”Encode” high-dimensional neighborhood information as a distribution

• Intuition: Random walk between data points.
• High probability of jumping to a close point

• Find low dimensional points such that their neighborhood 
distribution is similar.

• How do you measure the distance between distributions?

• Most common measure: KL divergence
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Neighborhood Distributions

• Consider the neighborhood around an input data point xi ∈ Rd

• Imagine that we have a Gaussian distribution centered around xi

• Then the probability that xi chooses some other data point xj as 
its neighbor is in proportion with the density under this Gaussian

• A point closer to xi will be more likely than one further away
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SNE objective
• Given x1, .., xn ∈ RD we define the distribution of distances between points Pij

• Goal: Find good embedding y1, .., yn ∈ Rd for some d < D (normally 2 or 3)

• How do we measure an embedding quality?

• For points y1, .., yn ∈ Rd we can define distribution Qij similarly to Pij

• Optimize Q to be close to P
• Minimize KL-divergence

• The embeddings y1, .., yn ∈ Rd are the parameters we are optimizing.
• How do you embed a new point? No embedding function, but there are ways.
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Kullback–Leibler divergence

• KL divergence measures distance between two distributions, P and Q:

• Not a metric function - not symmetric!

• Code theory intuition: If we are transmitting information that is distributed
according to P, then the optimal (lossless) compression will need to send on
average H(P) bits.

• What happens if you expect P (and design your compression accordingly), but
the actual distribution is Q?
• will send on average H(Q) + KL(Q||P) bits
• KL(Q||P) is the ”penalty” for using the wrong distribution
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Crowding Problem

• In high dimensions, we have more room, points can have a lot of 
different neighbors

• In 2D, a point can have a few neighbors at distance one all far from each
other - what happens when we embed in 1D?

• This is the ”crowding problem” - we don’t have enough room to
accommodate all neighbors.

• This is one of the biggest problems with SNE.

• t-SNE solution: Change the Gaussian in Q to a heavy-tailed distribution.
• if Q changes slower, we have more ”wiggle room” to place points at.
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CNN features 
t-SNE 2d 
embedding

77
http://cs.stanford.edu/people/karpathy/cnnembed



CNN features 
t-SNE 2d 
embedding

78
https://lvdmaaten.github.io/tsne



t-SNE summary

• t-SNE is a great way to visualize high-dimensional data

• Helps understand ”black-box” algorithms like DNN.

• Reduced ”crowding problem” with heavy-tailed distribution.

• Non-convex optimization - solved by gradient descent (GD) with momentum.

• Maaten, L.v.d. and Hinton, G., (2008) Visualizing data using t-SNE. Journal of 
Machine Learning Research, Vol 9(Nov), pp. 2579—2605, [PDF]

• Wattenberg, M., Viégas, F. and Johnson, I. (2016) How to Use t-SNE 
Effectively, Distil https://distill.pub/2016/misread-tsne/

• Poličar, P. OpenTSNE, https://github.com/pavlin-policar/openTSNE
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Topics overview

• Basics of artificial neural networks (revision)

• Backpropagation (revision)

• Deep learning

• Convolutional neural networks

• Autoencoders

• Generative adversarial networks

• Robustness

We will mention transformer networks in the natural language processing topic.
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Artificial neural networks

• many approaches, we shall cover the basic ideas

• currently very strong interest, especially in deep neural networks

• http://www.deeplearningbook.org (from 2016, see also other newer 
literature in the introductory slides 01)

3



Artificial neural networks: 
brain analogy

4learning: error backpropagation



A neuron

• Computational units, passing messages (information) in the network, 
typically organized into layers

𝑦 = 𝜎(σ𝑖=0
𝑛 𝑤𝑖𝑥𝑖)

• where 𝑥𝑖 are the inputs, 𝑥0 = 1 (bias term), 𝑤𝑖 are weights of the 
neuron, and 𝜎 is a non-linear activation function
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Activation functions

• examples: step function, sigmoid (logistic) 
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Activation functions

• ReLU (rectified linear unit)

 f(x) = max(0, x)

• softplus / approximation of ReLU with 
continuous derivation
 f(x) = ln(1+ex)

• ELU (Exponential Linear Unit)

• Leaky ReLU: like ReLU but small slope for 
negative values instead of a flat slope

• many others
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Why nonlinear?

What is a derivative of a sigmoid? 



A multi-layer feed-forward NN 

9

Output layer

Input layer

Hidden layer

Output vector

Input vector: X

wij



How a multi-layer NN works?

• The inputs to the network correspond to the attributes measured for each training tuple 

• Inputs are fed simultaneously into the units making up the input layer

• They are then weighted and fed simultaneously to a hidden layer

• The number of hidden layers is arbitrary; if more than 1 hidden layer is used, the network is 

called a deep neural network 

• The weighted outputs of the last hidden layer are input to units making up the output layer, 

which emits the network's prediction

• The network is feed-forward: None of the weights cycles back to an input unit or to an output 

unit of a previous layer

• If we have backwards connections, the network is called a recurrent neural network

• From a statistical point of view, networks perform nonlinear regression: Given enough hidden 

units and enough training samples, they can closely approximate any function

10



Feed-Forward Network

• neurons are activated progressively throug layers from 
input to output

11



Feed-Forward Network
• Values are propagated through the network to the output, which 

returns the prediction

12
Next 6 slides by Andrew Rosenberg



Feed-Forward Networks
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Feed-Forward Networks
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Feed-Forward Networks
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Feed-Forward Networks
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Feed-Forward Networks
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Softmax

• In classification, softmax is often
used for the last layer

• normalizes the output scores to be 
a probability distribution (values 
between 0 and 1, the sum is 1)

18



Criterion function
• together with softmax we 

frequently use cross entropy as 
loss (cost) function C
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Backpropagation learning algorithm for NN

• Backpropagation: a neural network learning algorithm 

• Started by psychologists and neurobiologists to develop and test computational 

analogues of neurons

• A neural network: a set of connected input/output units where each connection has 

a weight associated with it

• During the learning phase, the network learns by adjusting the weights so as to be 

able to predict the correct class label of the input tuples

• Also referred to as connectionist learning due to the connections between units

20



Backpropagation algorithm

• Iteratively process a set of training tuples & compare the network's prediction with the actual known 

target value

• For each training tuple, the weights are modified to minimize the mean squared error between the 

network's prediction and the actual target value 

• Modifications are made in the “backwards” direction: from the output layer, through each hidden layer 

down to the first hidden layer, hence “backpropagation”

• Steps

• Initialize weights to small random numbers, associated with biases 

• Propagate the inputs forward (by applying the activation function) 

• Backpropagate the error (by updating weights and biases)

• Terminating condition (when error is very small, etc.)
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Gradient descent (GD)

• Gradient descent is an efficient local optimization in ℝ𝑛

• Local minimum of  function f: ℝ𝑛 → ℝ is a point x for which f(x) ≤ f(x′) for all x′ that are 

“near” x

• Gradient ∇𝑓 𝑥 is a function ∇𝑓: ℝ𝑛 → ℝ𝑛 comprising n partial derivatives: 

∇𝑓 𝑥 = (
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
, … ,

𝜕𝑓

𝜕𝑥𝑛
)

• The GD optimization moves in the direction of -∇𝑓 𝑥



Ilustration of GD



GD 
algorithm

GRADIENT-DESCENT(f, x0, γ, T) {

// function f,  initial value x0, fixed step size γ, number of steps T

x_best = x = x0 ; // n-dimensional vectors, initially set to the initial value

f_best = f_x = f(x_best) ;

for t = 0 to T – 1 do {

x_next = x – γ・ ∇f(x); // ∇f(x), x, and x_next are n-dimensional

f_next = f(x_next)

if (f_next < f_x)

x_best = x_next ; 

x = x_next ;

f_x = f_next ;

}

return x_best ;

}



Chain rule of derivation

• In a network, the output of each neuron is a function of the activation function 
and all its inputs, where the inputs may again be composite functions of 
neurons in previous layers

• To compute the gradient of a composite function, we use the chain rule of 
derivation 

𝑓 𝑔 𝑥
′
= 𝑓′ 𝑔 𝑥 𝑔′(𝑥)



Error Backpropagation

• We will do gradient descent on the whole network.

• Training will proceed from the last layer to the first.

26Next 18 slides by Andrew Rosenberg



Error Backpropagation

• Introduce variables over the neural network

27



Error Backpropagation

• Introduce variables over the neural network
• Distinguish the input and output of each node
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Error Backpropagation
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Error Backpropagation

30

Training: Take the gradient of the last component and iterate backwards



Error Backpropagation
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Empirical Risk Function



Error Backpropagation
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Optimize last layer weights wkl

Calculus chain rule



Error Backpropagation
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Optimize last layer weights wkl

Calculus chain rule



Error Backpropagation
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Optimize last layer weights wkl

Calculus chain rule



Error Backpropagation
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Optimize last layer weights wkl

Calculus chain rule



Error Backpropagation
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Optimize last layer weights wkl

Calculus chain rule



Error Backpropagation
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Optimize last hidden weights wjk



Error Backpropagation

38

Optimize last hidden weights wjk

Multivariate chain rule



Error Backpropagation
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Optimize last hidden weights wjk

Multivariate chain rule



Error Backpropagation
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Optimize last hidden weights wjk

Multivariate chain rule



Error Backpropagation
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Optimize last hidden weights wjk

Multivariate chain rule



Error Backpropagation

42

Repeat for all previous layers



Error Backpropagation

43

Now that we have well defined gradients for each parameter, update using Gradient Descent



Error Back-propagation
• Error backpropagation unravels the multivariate chain 

rule and solves the gradient for each partial component 
separately.

• The target values for each layer come from the next layer.
• This feeds the errors back along the network.
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Learning with error backpropagation

• randomly initialize parameters (weights)

• compute error on the output

• compute contributions to error, 𝛿𝑛, on each step 
backwards

• step

• epoch

• batch

• minibatch
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Defining a network topology

• Decide the network topology: 

Specify # of units in the input layer, # of hidden layers (if > 1), # of units in each 

hidden layer, and # of units in the output layer

• Normalize the input values for each attribute measured in the training tuples to 

[0.0—1.0]

• One input unit per discrete attribute value, 1-hot encoded

• For classification and more than two classes, one output unit per class is used

• Once a network has been trained and its accuracy is still unacceptable, repeat 

the training process with a different network topology or a different set of initial 

weights

46



Neural network: strengths and weaknesses
• Weakness

• Long training time 

• Require a number of parameters typically best determined empirically, e.g., the network topology 
or “structure.”

• Poor interpretability: difficult to interpret the symbolic meaning behind the learned weights and 
of “hidden units” in the network

• Easy to overfit without an evaluation set

• Strength

• High tolerance to noisy data 

• Good generalization to untrained patterns 

• Well-suited for continuous-valued inputs and outputs

• Algorithms are inherently parallel

• Builds more advanced representation

• Successful on an array of real-world data, especially images, text, and time-series, e.g., one of the 
early successful deep networks was applied to hand-written letters

• Techniques exist for the extraction of explanations from trained (small) neural networks
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Efficiency and interpretability

• Efficiency of backpropagation:

Each epoch (one iteration through the training set) takes O(|D| * w), with |D| 

training instances and w weights, but # of epochs can be exponential to n, the 

number of inputs, in worst case (not in practice)

• For easier comprehension: Rule extraction by network pruning

• Simplify the network structure by removing weighted links that have the least 

effect on the trained network

• Then perform link, unit, or activation value clustering

• The set of input and activation values are studied to derive rules describing the 

relationship between the input and hidden unit layers

• Sensitivity analysis: assess the impact that a given input variable has on a network 

output.  The knowledge gained from this analysis can be represented in rules

• Recent attempts tend to learn interpretation along with learning
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Overfitting and model complexity

• which curve is 
more plausible 
given the data?

• overfitting

• neural nets are 
especially prone 
to overfitting

• why?

49



Prevention of overfitting

• Evaluation set
• Weight-decay
• Weight-sharing
• Early stopping
• Model averaging
• Bayesian fitting of neural nets:

• distributions instead of weights, 
• inference as sampling from distributions

• Dropout
• Generative pre-training
• etc.
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Deep learning  = learning of hierarchical represenation
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Types of NN architectures

• Historically, feed-forward networks were the most commonly used; 
here, neurons are activated progressively through layers from input 
to output

• However, we often combine different types of layers

• Examples of other architectures:  recurrent, convolutional, 
transformer
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Another option: 
Level jumping or 
Skip-connections

• prevents vanishing gradients
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Recurrent networks

• back connections

• biologically more 
realistic

• store information 
from the past

• more difficult to 
learn
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Recurrent networks 
for sequence learning

• unrolled network

• equivalent to deep 
networks with one 
hidden level per time 
slot

• but: hidden layers share 
weight (less parameters)
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Convolutional neural networks (CNN)
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Convolution
• an operation on two functions 

(f and g) that produces a third 
function expressing how the shape of 
one is modified by the other.

• for discrete functions
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Convolutional Neural Network (CNN)

• Convolutional Neural Networks are inspired by mammalian visual 
cortex.
– The visual cortex contains a complex arrangement of cells, which are 

sensitive to small sub-regions of the visual field, called a receptive field. 
These cells act as local filters over the input space and are well-suited to 
exploit the strong spatially local correlation present in natural images.

– Two basic cell types: 
• Simple cells respond maximally to specific edge-like patterns within their receptive 

field.

• Complex cells have larger receptive fields and are locally invariant to the exact 
position of the pattern.
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Convolutional neural networks (CNN)

• a successful approach in 
image analysis, also used in 
language processing

• idea: many copies of small 
detectors used all over the 
image, recursively combined, 

• detectors are learned, 
combinations are learned

5
9



2d convolution for images

60



Basic Idea of CNNs

Input

Hidden layer



Basic Idea of CNNs

Input

Hidden layer



Basic Idea of CNNs

Input

Hidden layer



Basic Idea of CNNs

Input

Hidden layer



Convolutional Network

• The network is not fully 
connected.  

• Different nodes are 
responsible for different 
regions of the image.

• This allows for robustness 
to transformations.

• Convolution is combined 
with subsampling.
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CNN Architecture: Convolutional Layer

• The core layer of CNNs
• The convolutional layer consists of a set of filters.

– Each filter covers a spatially small portion of the input data.

• Each filter is convolved across the dimensions of the input data, 
producing a multidimensional feature map.
– As we convolve the filter, we are computing the dot product between the 

parameters of the filter and the input.

• Intuition: the network will learn filters that activate when they see 
some specific type of feature at some spatial position in the input.

• The key architectural characteristics of the convolutional layer is 
local connectivity and shared weights.
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Neural implementation of convolution

• weights of the same colors have 
equal weights

• adapted backpropagation

• images: 2d convolution

• languages: 1d convolution
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CNN Architecture: Pooling Layer

• Intuition: to progressively reduce the spatial size of the representation, to reduce the 
amount of parameters and computation in the network, and hence to also control 
overfitting

• Pooling partitions the input image into a set of non-overlapping rectangles and, for 
each such sub-region, outputs the maximum value of the features in that region.

68
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CNN: pooling

• reduces the number of connections to the next layer (prevents 
the excessive number of parameters, speeds-up learning, 
reduces overfitting)

• max-pooling, min-pooling, average-pooling

• the problem: after several layers of pooling, we lose the 
information about the exact location of the recognized pattern 
and about spatial relations between different patterns and 
features, e.g., a nose on a forehead
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Building-blocks for CNN’s

70

Each sub-region yields a 
feature map, representing 
its feature.

Images are segmented into 
sub-regions.

Feature maps are 
trained with neurons.

Feature maps of a larger 
region are combined.

Shared weights



Full CNN
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pooling

pooling



Convolutional networks: illustration 
on image recognition 

• a useful feature is learned and used on several 
positions

• prevents dimension hopping

• max-pooling 
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CNN early success: LeNet

• handwritten digit recognition by Yann LeCun, 

• several hidden layers

• several convolutional filters

• pooling

• several other tricks
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LeNet5 architecture

• handwritten digit recognition

74



Hand-written Digit Recognition

• Input:
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Errors of LeNet5

• 80 errors in 
10,000 test 
cases
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Benefits of CNNs

• The number of weights can be much less than 1 million for a 1 
mega pixel image.

• The small number of weights can use different parts of the 
image as training data. Thus we have several orders of 
magnitude more data to train the fewer number of weights.

• We get translation invariance for free.

• Fewer parameters take less memory and thus all the 
computations can be carried out in memory in a GPU or across 
multiple processors.



1d convolution for text

78

• convolution 
on words, 
lemmas, or 
characters



Example: what the following CNN returns 1/2

79

We have a convolutional neural network for images of 5 by 5 pixels. 
In this network, each hidden unit is connected to a different 4 x 4 region of the input image: 
The first hidden unit, h1, is connected to the upper left 4x4 portion of the input image (as shown). 
The second hidden unit, h2, is connected to the upper right 4x4 portion of the input image (as shown). 
The third hidden unit, h3, is connected to the lower left 4x4 portion of the input image (not shown in the diagram). 
The fourth hidden unit, h4, is connected to the lower right 4x4 portion of the input image (not shown in the diagram). 
Because it's a convolutional network, the weights (connection strengths) are the same for all hidden units: the only 
difference between the hidden units is that each of them connects to a different part of the input image. 

In the second diagram, we show the array of weights, which are the same for each of the four hidden units.
For h1, weight w11 is connected to the top-left pixel, i.e. x11, while for hidden unit h2, weight w11 connects to the pixel 
that is one to the right of the top left pixel, i.e. x12.

Imagine that for some training case, we have an input image where each of the black pixels in the top diagram
has value 1, and each of the white ones has value 0. Notice that the image shows a "3" in pixels.

The network has no biases. The weights of the network are given as follows:
w11=1w12=1w13=1w14=0w21=0w22=0w23=1w24=0w31=1w32=1w33=1w34=0w41=0w42=0w43=1w44=0
The hidden units are linear.

For the training case with that "3" input image, what is the output y1, y2, y3, y4 of each of the four hidden units?



Example: what the following CNN returns 2/2
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Autoencoders

• Autoencoders are designed to reproduce their input, especially for 
images.  

• The key point is to reproduce the input from a learned encoding. 

• The loss function is the reproduction error

https://www.edureka.co/blog/autoencoders-tutorial/



Autoencoders: structure

• Encoder:  compress input into a latent-space of usually smaller 
dimension.  h = f(x)

• Decoder: reconstruct input from the latent space.   r = g(f(x)) 
with r as close to x as possible

https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f



Autoencoder applications: denoising

• Denoising:  input clean image + noise and train to reproduce 
the clean image.

https://www.edureka.co/blog/autoencoders-tutorial/



Denoising autoencoders

• Basic autoencoder trains to minimize the loss between x and 
the reconstruction g(f(x)).

• Denoising autoencoders train to minimize the loss between x 
and g(f(x+w)), where w is random noise.  

• Same possible architectures, different training data.  

https://blog.keras.io/building-autoencoders-in-keras.html



Autoencoder applications: colorization

• Image colorization:  input black and white and train to produce 
color images

https://www.edureka.co/blog/autoencoders-tutorial/



Autoencoder applications: watermark removal

• Watermark removal

https://www.edureka.co/blog/autoencoders-tutorial/



Properties of autoencoders

• Data-specific: Autoencoders are only able to compress data 
similar to what they have been trained on.

• Lossy: The decompressed outputs will be degraded compared 
to the original inputs.

• Learned automatically from examples: It is easy to train 
specialized instances of the algorithm that will perform well on 
a specific type of input.

https://www.edureka.co/blog/autoencoders-tutorial/



Bottleneck layer (undercomplete)

• Suppose input images are n x n and the latent space is 
m < n x n.  

• Then the latent space is not sufficient to reproduce all images.  

• Needs to learn an encoding that captures the important 
features in training data, sufficient for approximate 
reconstruction.  



GANs

• Generative

• Learn a generative model

• Adversarial

• Trained in an adversarial setting

• Networks

• Use Deep Neural Networks
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Why Generative Models?

• We have only seen discriminative models so far
• Given an image X, predict a label Y
• Estimates P(Y|X)
• Discriminative models have several key limitations
• Cannot model P(X), i.e. the probability of seeing a certain image
• Thus, can’t sample from P(X), i.e. can’t generate new images
• Generative models (in general) cope with all of above
• Can model P(X)
• Can generate new images
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What GANs can do
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GANs in action
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Adversarial Training

• Generator: generate fake samples, tries to fool the 
Discriminator

• Discriminator: tries to distinguish between real and fake 
samples

• Train them against each other

• Repeat this and we get better Generator and Discriminator
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Diffusion models intro

• Recent superior image generators, 

• E.g., DALL-E is prompt based

• "a bowl of soup that is a portal 
to another dimension as digital art".
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Idea of diffusion models

• generate data similar to the data on which they are trained

• destroy training data through the successive addition of 
Gaussian noise

• then learning to recover the data by reversing this noising 
process.

• After training, generate data by passing randomly sampled 
noise through the learned denoising process.
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Diffusion models 1/2

• A diffusion model maps to the latent space using a fixed 
Markov chain. This chain gradually adds noise to the data in 
order to obtain the approximate posterior.
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Diffusion models 2/2

• A diffusion model is trained to reverse the process
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Sources
• Ian Goodfellow and Yoshua Bengio and Aaron Courville: Deep Learning. MIT Press, 

2016, http://www.deeplearningbook.org

• PyTorch

• HuggingFace library

• TensorFlow
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Deep learnig
sucesses
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Weaknesses of deep learning
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Attacks on 
neural 
networks
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Failures on out-
of-distribution 
examples

105

Michael A. Alcorn, Qi Li, Zhitao Gong, 
Chengfei Wang, Long Mai, Wei-Shinn 
Ku, Anh Nguyen (2018):
Strike (with) a Pose: Neural Networks 
Are Easily Fooled by Strange Poses of 
Familiar Objects. arXiv:1811.11553
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Topic overview

 understanding language and intelligence

 text preprocessing and linguistic analysis

 components of modern NLP

 text representations

 information retrieval

 similarity of words and documents

 language and graphs

 large language models

 practical use of NLP: 

 sentiment analysis,

 paper recommendations

 summarization
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Understanding

language

 A grand challenge of (not only?) artificial intelligence

Who can understand me?

Myself I am lost

Searching but cannot see

Hoping no matter cost

Am I free?

Or universally bossed?

 Not just poetry, what about instructions, user manuals, 

newspaper articles, seminary works, internet forums, 

twits, legal documents, i.e. license agreements, etc.

3



An example: rules

Article 18 of FRI Study Rules and Regulations

Taking exams at an earlier date may be allowed on request 

of the student by the Vice-Dean of Academic Affairs with 

the course convener's consent in case of mitigating 

circumstances (leaving for study or placement abroad, 

hospitalization at the time of the exam period, giving birth, 

participation at a professional or cultural event or a 

professional sports competition, etc.), and if the applicant's 

study achievements in previous study years are deemed 

satisfactory for such an authorization to be appropriate.
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Understanding NL by computers

 Understanding words, syntax, semantics, context, 

writer’s intentions, knowledge, background, 

assumptions, bias …

 Doesn’t seem that LLM do it, though they generate 

excellent text output

 Ambiguity in language

 Newspaper headlines - intentional ambiguity :)

Juvenile court to try shooting defendant

Kids make nutritious snacks 

Miners refuse to work after death

Doctor on Trump‘s health: No heart, cognitive issues

5



Ambiguity

 l made her duck.

 Possible interpretations:

 I cooked waterfowl for her.

 I cooked waterfowl belonging to her.

 I created the (plaster?) duck she owns.

 I caused her to quickly lower her head or body.

 I waved my magic wand and turned her into 
undifferentiated waterfowl.

 Spoken ambiguity

 eye, maid

6



Disambiguation in syntax and 

semantics

 in syntax

 The girl told the story cried.

 John went to the bank.

 Put the box on the table in the kitchen.

 Bring your old car seat to be recycled.

 Search engine queries: natural language processing,  
jaguar, Paris, 

 POS tagging, word sense disambiguation

7



Understanding language as 

(artificial) intelligence test

 The system understanding natural language on 

human level should contain a large portion of 

human knowledge and would achieve the most 

important goals of artificial intelligence. Its response 

would be indistinguishable  from human’s.

8



Turing test

 Turing test, Loebner prize, CYC, ELISA, ALLICA, chatterbot, 
VIDA, TIA, Siri (knowledge recognition, context detection, 
web service recommendation)

 Seems that LLMs can pass it, are they intelligent?

 The question: is mimicking human skills sufficient?

9



ELIZA

 ELIZA (Weizenbaum, 1966)

 Limited conversation (Rogerian psyhiatrist)

User: You are like my father in some ways.
ELIZA: What resemblance do you see?
User: You are not very aggressive but I think you don't want 
me to notice that.
ELIZA: What makes you think I am not aggressive?
User: You don't argue with me.
ELIZA: Why do you think I don't argue with you?
User: You are afraid of me.
ELIZA: Does it please you to believe I am afraid of you?

10



GPT-3 regressive language model 

as a chatbox

 the example is cherry-picked

11



Where is NLP today?
 active research area with many commercial applications

 large language models are used everywhere

 automatic reply engines

 machine translation

 text summarization

 question answering

 speech recognition and synthesis

 language generation

 interface to databases

 intelligent search and information extraction

 sentiment detection

 named entity recognition and linking

 categorization and classification of documents, messages, twits, etc. 

 cross-lingual approaches

 multi modal approaches (text + images, text + video)

 attempt to get to artificial general intelligence (AGI) through “foundation models”

 many (open-source) tools and language resource

 prevalence of deep neural network approaches (i.e. transformers)

12



Recommended literature

 Jurafsky, Daniel and James Martin (2024): Speech and 
Language Processing, 3rd edition in progress, almost all 
parts are available at authors‘ webpages
https://web.stanford.edu/~jurafsky/slp3/

 Steven Bird, Ewan Klein, and Edward Loper.  Natural 
Language Processing with Python. O’Reilly, 2009

 a free book accompanying NLTK library, regularly updated

 Python 3, http://www.nltk.org/book/

 Coursera

 several courses, e.g., Stanford NLP with DNN

13



Historically two approaches

 symbolical

 ,,Good Old-Fashioned AI’’

 empirical

 Statistical, text corpora

Merging both worlds: injecting symbolical 

knowledge (e.g., propositional logic) into LLMs

14



How it all started?

micro worlds

 example: SHRDLU, world of simple geometric 

objects

What is sitting on the red block?

What shape is the blue block on the table?

 Place the green pyramid on the red brick.

 Is there a red block? Pick it up.

What color is the block on the blue brick? Shape?

15



Micro world: block world,

SHRDLU (Winograd, 1972)

16



Linguistic analysis 1/2

Linguistic analysis contains several tasks: recognition of 

sounds, letters, word formation, syntactic parsing, 

recognizing semantic, emotions. Phases:

 Prosody - the patterns of stress and intonation in a 

language (rhythm and intonation)

 Phonology - systems of sounds and relationships 

among the speech sounds that constitute the 

fundamental components of a language

 Morphology - the admissible arrangement of sounds 

in words; how to form words, prefixes and suffixes …

 Syntax - the arrangement of words and phrases to 

create well-formed sentences in a language

17



Linguistic analysis 2/2

 Semantics - the meaning of a word, phrase, 

sentence, or text

 Pragmatics - language in use and the contexts in 

which it is used, including such matters as deixis 

(words whose meaning changes with context, e.g., I 

he, here, there, soon), taking turns in conversation, 

text organization, presupposition, and implicature

Can you pass me the salt? Yes, I can.

 Knowing the world: knowledge of  physical world, 

humans, society, intentions in communications …

 Limits of linguistic analysis, levels are dependent

18



Classical approach to text processing

 text preprocessing

 1. phase: syntactic analysis

 2. phase: semantic interpretation

 3. phase: use of world knowledge

In the neural approach, the preprocessing remains (but 

is simpler) the other three phases are merged into DNN 

19



Basic tools for text preprocessing

 document → paragraphs → sentences → words 

(→ (subword) tokens)

 In linguistic analysis also

words and sentences  lemmatization, POS tagging

 sentences  syntactical and grammatical analysis

 named entity recognition, 

20



Words and sentences

 sentence delimiters – punctuation marks and capitalization are  
insufficient

 E.g., remains of  1. Timbuktu from 5c BC, were discovered by  dr.  
Barth.

 Lexical analysis (tokenizer, word segmenter), not just spaces

 1,999.00€    or 1.999,00€!  

 Ravne na Koroškem

 Lebensversicherungsgesellschaft

 Port-au-prince

 Generalstaatsverordnetenversammlungen

 Rules, regular expressions, statistical models, dictionaries (of  
proper names), neural networks, manually segmented datasets

21



Lemmatization

 Lemmatization  is the process of grouping together the 
different inflected forms of a word so they can be 
analyzed as a single item.

 walk is the lemma of 'walk', 'walked', 'walks’, 'walking

 Lemmatization difficulty is language dependent i.e., 
depends on morphology

 Requires dictionary or lexicon for lookup
go, goes, going, gone, went
jaz, mene, meni, mano

 Ambiguity resolution may be difficult

Meni je vzel z mize (zapestnico).

 Uses rules, dictionaries, neural networks, manually 
labelled datasets

 Enlish also uses stemming (reducing inflected or derived 
words to their word stem

22



POS tagging

 assigning the correct part of speech (noun, verb, 

etc.) to words

 helps in recognizing phrases and names 

 Use rules, machine learning models, manually 

labelled datasets

23



An example:

 Text analyzer for Slovene, i.e. morphosyntactical
tagging, available at
https://orodja.cjvt.si/oznacevalnik/slv/

Nekega dne sem se napotil v naravo. Že spočetka 
me je žulil čevelj, a sem na to povsem pozabil, ko sem 
jo zagledal. Bila je prelepa. Povsem nezakrita se je 
sončila na trati ob poti. Pritisk se mi je dvignil v višave. 
Popoln primerek kmečke lastovke!

 Tags are standardized, for East European languages 
in Multext-East specification, e.g.,

dne; tag Somer  = Samostalnik, obče ime, moški spol, 
ednina, rodilnik; lema: dan

a unifying attempt: universal dependencies (UD): cross-
linguistically consistent treebank annotation for many 
languages

24



CLASSLA-Stanza pipeline output

25



 Nekega dne sem se napotil v naravo. Že spočetka 
me je žulil čevelj, a sem na to povsem pozabil, ko sem 
jo zagledal. Bila je prelepa. Povsem nezakrita se je 
sončila na trati ob poti. Pritisk se mi je dvignil v višave. 
Popoln primerek kmečke lastovke!

26



TEI-XML format

<TEI xmlns="http://www.tei-c.org/ns/1.0">
<text>
<body>
<p>
<s>
<w msd="Zn-mer" lemma="nek">Nekega</w>
<S/>
<w msd="Somer" lemma="dan">dne</w>
<S/>
<w msd="Gp-spe-n" lemma="biti">sem</w>
<S/>
<w msd="Zp------k" lemma="se">se</w>
<S/>
<w msd="Ggdd-em" lemma="napotiti">napotil</w>
<S/>
<w msd="Dt" lemma="v">v</w>
<S/>
<w msd="Sozet" lemma="narava">naravo</w>
<c>.</c>
<S/>

</s>
…

</p>
</body>

</text>
</TEI>

27



MSD tags

Multext-East 

specification

dne; tag Somer  = 

Samostalnik, obče ime, 

moški spol, ednina, 

rodilnik; lema: dan

28



POS tagging in English

 http://nlpdotnet.com/Services/Tagger.aspx

 Rainer Maria Rilke, 1903
in Letters to a Young Poet

...I would like to beg you dear Sir, as well as I can, to have 
patience with everything unresolved in your heart and to try 
to love the questions themselves as if they were locked 
rooms or books written in a very foreign language. Don't 
search for the answers, which could not be given to you 
now, because you would not be able to live them. And the 
point is to live everything. Live the questions now. Perhaps 
then, someday far in the future, you will gradually, without 
even noticing it, live your way into the answer.

29



POS tagger output 

I/PRP would/MD like/VB to/TO beg/VB you/PRP 

dear/JJ Sir/NNP ,/, as/RB well/RB as/IN I/PRP can/MD ,/, 

to/IN have/VBP patience/NN with/IN everything/NN 

unresolved/JJ in/IN your/PRP$ heart/NN and/CC to/TO 

try/VB to/TO love/VB the/DT questions/NNS 

themselves/PRP as/RB if/IN they/PRP were/VBD 

locked/VBN rooms/NNS or/CC books/NNS written/VBN 

in/IN a/DT very/RB foreign/JJ language/NN ./.

30



Named entity recognition (NER)

 NATO Secretary-General Jens Stoltenberg is 
expected to travel to Washington, D.C. to meet with 
U.S. leaders.

 [ORG NATO] Secretary-General [PER Jens 
Stoltenberg] is expected to travel to [LOC 
Washington, D.C.] to meet with [LOC U.S.] leaders.

 Named entity linking (NEL) also named entity 
disambiguation – linking to a unique identifier, e.g. 
wikification
jaguar, Paris, London, Dunaj
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Basic language resources: corpora

 Statistical natural language processing list of resources 
http://nlp.stanford.edu/links/statnlp.html

 Opus http://opus.nlpl.eu/ multilingual parallel corpora, e.g., DGT 
JRC-Acqui 3.0, Documents of the EU in 22 languages

 Slovene language corpora GigaFida, ccGigaFida, KRES, 
ccKres, GOS, Artur, JANES, KAS, Trendi

 The main Slovene language resources

 http://www.clarin.si

 https://github.com/clarinsi

 http://www.cjvt.si/

 https://www.slovenscina.eu/

 WordNet, SloWNet, sentiWordNet, …

 Thesaurus https://viri.cjvt.si/sopomenke/slv/

 LLMs: on HuggingFace cjvt, e.g., SloBERTa and GaMS
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WordNet is a database composed of synsets:
synonyms,

hypernyms

hyponyms,

meronyms,

holonyms, 

etc.
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Popular NLP applications

 document retrieval

 information extraction

 automatic speech recognition and generation

 text classification

 automatic summarization

 question answering

 sentiment analysis, emotion detection, stance detection

 machine translation, 

 language generation

 comment filtering, hate speech detection, fake news detection

 topic analysis

 grammar tools

 many more

34



Document retrieval

 Historical: keywords

 Now: whole text search

Organize a database, indexing, search algorithms

 input: a query (of questionable quality, ambiguity, 

answer quality)

35



Document indexing

Collect all words from all documents, use 
lemmatization

 The inverted file data structure

 For each word keep

 Number of appearing documents

Overall number of appearances

 For each document

Number of appearances 

Location

36
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Full text search engine

Most popular: Apache Lucene/Solr

 full-text search, hit highlighting, real-time indexing, 

dynamic clustering, database integration, NoSQL 

features, rich document (e.g., Word, PDF) handling. 

 distributed search and index replication, scalability 

and fault tolerance.
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Search with logical operators

 AND, OR, NOT

 jaguar AND car

jaguar  NOT animal

 Some system support neighborhood search (e.g., 

NEAR) and stemming (!)

paris! NEAR(3) fr! 

president NEAR(10) bush

 libraries, concordancers

 E.g-, for Slovene: https://viri.cjvt.si/gigafida/
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Logical operator search is outdated

 Large number of results

 Large specialized incomprehensible queries

 Synonyms

 Sorting of results

 No partial matching

 No weighting of query terms

40



Ranking based search

Web search

 Less frequent terms are more informative

 NL input - stop words, lemmatization

 Vector based representation of documents and 

queries (bag-of-words or dense embeddings)

41



Sparse vector representation: 

bag-of-words

 An elephant is a mammal. Mammals are animals. 
Humans are mammals, too. Elephants and humans 
live in Africa.

9 dimensional vector (1,1,3,2,2,1,1,3,1)

In reality this is sparse vector of dimension |V| 
(vocabulary size in order of 10,000 dimensions)

Similarity between documents and queries in vector 
space.

Africa animal be elephant human in live mammal too

1 1 3 2 2 1 1 3 1
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Vectors and documents

 a word occurs in several documents

 both words and documents are vectors

 an example: Shakespeare

 term-document matrix, dimension |V| x |D|

 a sparse matrix 

word embedding
43



Vector based similarity

 e.g., in two dimensional space

 the difference between dramas and comedies
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Document similarity

 Assume orthogonal dimensions

Cosine similarity

 Dot (scalar) product of vectors

BA

BA 
=)cos(
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Importance of words

 Frequencies of words in particular document and 

overall

 inverse document frequency idf

 N = number of documents in collection

 nb = number of documents with word b

)log(
b

b
n

N
idf =
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Weighting dimensions (words)

Weight of word b in document d

tfb,d = frequency of term b in document d

 called TF-IDF weighting (an improvement over bag-

of-words)

dbdbdb idftfw ,,, =
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Weighted similarity

 Between query and document

 Ranking by the decreasing similarity









=

b

qb

b

db

b

qbdb

ww

ww

dqsim
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2
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Performance measures for search

 Statistical measures

 Subjective measures

 Precision, recall

 A contingency table analysis of precision and 

recall
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Precision and recall

 N = number of documents in collection

 n = number of important documents for given query q

 Search returns m documents including a relevant ones

 Precision  P = a/m 

proportion of relevant document in the obtained ones

 Recall  R = a/n

proportion of obtained relevant documents

 Precision recall graphs
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An example: low precision, low 

recall
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Precision-recall graphs
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F-measure

 combine both P and R

Weighted precision and recall

 =1 weighted harmonic mean

 Also used =2 or = 0.5
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Ranking measures

 precision@k

 proportion of relevant document in the first k obtained ones

 recall@k

 proportion of relevant documents in the k obtained among all relevant 

 F1@k

 mean reciprocal rank 

𝑀𝑅𝑅 =
1

𝑄
෍

𝑖=1

𝑄
1

rank𝑖

 over Q queries, 

 considers only the rank of the best answer
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Why dense textual embeddings?

• Best machine learning models for text, i.e. deep neural

networks, require numerical input.

• Simple representations like 1-hot-encoding and bag-of-

words do not preserve semantic similarity.

• We need dense vector represenation for text elements.



Dense vector embeddings

 advantages compared to sparse embeddings: 

 less dimensions, less space

 easier input for ML methods

 potential generalization and noise reduction

 potentially captures synonymy, e.g., road and highway are 
different dimensions in BOW

 the most popular approaches

matrix based transformations to reduce dimensionality (SVD in
LSA)

 neural embeddings (word2vec, Glove)

 explicit contextual neural embeddings (ELMo, BERT)

 only use an implicit representation in LLM 
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good

nice

bad
worst

not good

wonderful
amazing

terrific

dislike

worse

very good incredibly good

fantastic

incredibly badnow

youi

that

with

byto
‘s

are

is

a

than

Meaning focused on similarity

 Each word is a vector 

 Similar words are "nearby in space"



Distributional semantics

"The meaning of a word is its 
use in the language“
Ludwig Wittgenstein, PI #43 



Neural embeddings

 neural network is trained to predict the context of 

words (input: word, output: context of neighboring 

words)
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word2vec method

• Train a classifier on a binary prediction task:

Is word w likely to show up near a given word, e.g., "apricot"?

• We don’t actually care about this task

• But we'll take the learned classifier weights as the word 

embeddings

• Words near apricot acts as ‘correct answers’ to the question 

“Is word w likely to show up near apricot?” 

• No need for hand-labeled supervision



word2vec (skip-gram) training data

 Training sentence:

 ... lemon, a tablespoon of apricot jam   a pinch ... 

 c1            c2   target c3 c4

• Asssume context words are those in +/- 2 word window

• Produce the following input-outputs for positive instances:
(apricot, tablespoon), (apricot, of), (apricot, jam), (apricot, a)

• Get negative training examples randomly

• Train a neural network to predict the probability of a co-
occurring word
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Neural network based embedding
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Relational similarity

vector(‘king’) - vector(‘man’) + vector(‘woman’)  ≈ vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) ≈ vector(‘Rome’)
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Embeddings can help study word 

history

Train embeddings on old books to study 

changes in word meaning!!



Diachronic word embeddings for 

studying language change

6
7

1900 1950 2000

vs.

Word vectors for 1920 Word vectors 1990

“dog” 1920 word vector

“dog” 1990 word vector



Visualizing changes

Project 300 dimensions down into 2

~30 million books, 1850-1990, Google Books data
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The evolution of sentiment words

Negative words change faster than positive words



Embeddings reflect cultural bias

 Ask “Paris : France :: Tokyo : x” 

 x = Japan

 Ask “father : doctor :: mother : x” 

 x = nurse

 Ask “man : computer programmer :: woman : x” 

 x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. 
"Man is to computer programmer as woman is to homemaker? debiasing word embeddings." 
In Advances in Neural Information Processing Systems, pp. 4349-4357. 2016.



Change in linguistic framing 1910-1990

Change in association of Chinese names with adjectives framed as 
"othering" (barbaric, monstrous, bizarre)

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the 
National Academy of Sciences, 115(16), E3635–E3644 



Contextual embeddings / 

Large language models

• word2vec produces the same vector for a word like 
bank irrespective of its meaning and context

• recent embeddings take the context into account

• already established as a standard

• e.g., BERT for contextual word embeddings



Large language models (LLMs)

pretrained neural large language models

trained on large text corpora to capture

relations in language

finetuned to specific tasks

many are publicly available

on HuggingFace



Transformer architecture of NNs

 currently the most successful DNN

 non-recurrent

 architecturally it is an encoder-decoder model

 fixed input length

 can be parallelized

 adapted for GPU (TPU) processing

 based on extreme use of attention

 https://github.com/dair-ai/Transformers-Recipe
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Transformer is an encoder-decoder model

75

on the figure there are 6 encoders and 6 decoders

(could be some other number)



Transformer

overview

 Initial task: machine

translation with parallel

corpus

 Predict each

translated word

 Final cost/loss/error

function is standard 

cross-entropy error on 

top of a softmax 

classifier

76

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, 
L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I., 2017. 

Attention is all you need. In Advances in neural 
information processing systems (pp. 5998-6008).



Transformer: encoder

• two layers

• no weight sharing between different encoders

• self-attention helps to focus on relevant part of input
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Transformer: decoder

• the same as encoder but with an additional attention layer in 
between, receiving input fom encoder
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Start with embeddings
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Input to transformer

80

• embeddings, e.g., 512 dimensional vectors
(special, we will discuss that later)

• fixed length, e.g., max 128 tokens (in modern at 
least 8192)

• dependencies between inputs are only in the self-
attention layer, no dependencies in feed-forward
layer – good for parallelization

• Let us first present the working of the 
transformer with an illustration of the prediction



Encoding
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Self-attention

• As the model processes each word (each position in the input 
sequence), self-attention allows it to look at other positions in 
the input sequence for clues that can help lead to a better 
encoding for this word

”The animal didn't cross the street because it was too tired”

• What does “it” in this sentence refer to? Is it referring to the 
street or to the animal? It’s a simple question to a human, but 
not as simple to an algorithm.

• ”The animal didn't cross the street because it was too wide”

• When the model is processing the word “it”, self-attention 
allows it to associate “it” with “animal”. 82



Illustrating self-attention

• As we are encoding 
the word "it" in 
encoder #5 (the top 
encoder in the stack), 
part of the attention 
mechanism was 
focusing on "The 
Animal", and baked a 
part of its 
representation into 
the encoding of "it".
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Self-attention details 1/4

84

Multiplying x1 by the WQ weight matrix produces q1, the "query" vector associated with that 
word. We end up creating a "query", a "key", and a "value" projection of each word in the input 
sentence.



Details 2/4: scoring
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Details 3/4: normalization of scores
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Details 4/4: self-attention output 
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illustration for
the third input
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Matrix calculation of self-attention 1/2

89

Every row in the X matrix 
corresponds to a word in the 
input sentence. 
The embedding vector x (512) is 
larger then the q/k/v vectors (64)



Matrix calculation of self-attention 2/2

90

• final calculation



Encoding
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Example: two attention heads
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Example: 8 att. heads

93

• What to do with 8 Z matrices, the feed-forward layer is expecting a single matrix 
(one  vector for each word). We need to condense all attention heads into one 
matrix.



Condensation of attention heads
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Computing multi-head attention
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Summary of self-attention
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Illustration of self-attention: 1 head

• encoder #5 (the top 
encoder in the stack)

• As we encode the word 
"it", one attention 
head is focusing most 
on "the animal", while 
another is focusing on 
"tired" -- in a sense, 
the model's 
representation of the 
word "it" bakes in 
some of the 
representation of both 
"animal" and "tired". 
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Illustration of self-attention: all heads

• all the 
attention 
heads in one 
picture are  
harder to 
interpret

98



Adding position encoding
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Example: encoding position

• the values of positional encoding vectors 
follow a specific pattern.

100



Example of positional encoding

101



Another positional encoding
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Encoder blocks

• Each block has two “sublayers”

– Multihead attention

– 2-layer feed-forward neural network
(with ReLU)

• Each of these two steps also has a residual
(short-circuit) connection and LayerNorm, 
i.e.:

– LayerNorm(x + Sublayer(x))
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Architecture with residual connection
– top level view
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Architecture with residual connection
– example
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Example: 2 stacked transformer

106



Complete encoder

• each encoder block is repeated
several times, e.g., 6 times

107



Decoder

• Decoders have the same components as encoders

• An encoder starts by processing the input sequence. 

• The output of the top encoder is transformed into a set of 
attention vectors K and V. 

• These are used by each decoder in its “encoder-decoder 
attention” layer which helps the decoder to focus on 
appropriate places in the input sequence.
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Encoder-decoder in action 1/2

109

After finishing the encoding phase, we begin the decoding phase. Each step in the 
decoding phase outputs an element from the output sequence (the English 
translation sentence in this case). 



Encoder-decoder in action 2/2

110

The steps repeat until a special symbol indicating the end of output is generated. The output 
of each step is fed to the bottom decoder in the next time step. We add positional encoding 
to decoder inputs to indicate the position of each word.



Self-attention and encoder-decoder
attention in the decoder

• In the decoder, the self-attention layer is only allowed to 
attend to itself and earlier positions in the output sequence 
(to maintain the autoregressive property).

• This is done by masking future positions (setting them to -inf) 
before the softmax step in the self-attention calculation.

• The “Encoder-Decoder Attention” layer works just like 
multiheaded self-attention, except it creates its Q (queries) 
matrix from the layer below it, and takes the K (keys) and V 
(values) matrix from the output of the encoder stack.
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Attentions in the decoder

1. Masked decoder self-attention on previously generated
outputs

2. Encoder-Decoder Attention, where queries come from
previous decoder layer and keys and values come from output of 
the encoder
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Animated workings of attention in 
transformer
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One encoder-
decoder block
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Producing the output words
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Training the transformer

• During training, an untrained model would go through the 
exactly the same forward pass. But since we are training it on 
a labeled training dataset, we can compare its output with the 
actual correct output.

• For illustration, let’s assume that our output vocabulary only 
contains six words(a, am, i, thanks, student, <eos>)

• The input is typically in the order of 104 (e.g., 30 000)
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The Loss Function
• evaluates the difference between the true output and the 

returned output

• transformer typically uses cross-entropy or Kullback–Leibler
divergence.

• The model output is a probability distribution, the true output
is 1-hot encoded, e.g., 
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Loss evaluation for sequences

• loss function has to be evaluated for the whole sentence, not 
just a single word

• transformers use greedy decoding or beam search

118



Three flavours of transformers

 encoder only (BERT)

 encoder-decoder (machine translation, T5)

 decoder only (GPT)

11
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BERT

• combines several tasks

• predicts masked words in a sentence

• also predicts order of sentences: is sentence A followed by 
sentence B or not

• combines several hidden layers of the network

• uses transformer neural architecture, only teh encoder part

• uses several fine tuned parameters

• multilingual variant supports 104 languages by training on 
Wikipedia

• publicly available

Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-training of deep bidirectional transformers for language
understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp 4171–4186



Many BERT-like embeddings

• XLM-R was trained on 2.5 TB of texts in 100 languages

• for Slovene: fastText (a variant of word2vec), ELMo, SloBERTa

• trilingual BERT – CroSloEngual

• on Clarin.si

• hundreds of papers investigating BERT-like models in major ML 

& NLP conferences

Ulčar, Matej and Marko Robnik-Šikonja. FinEst BERT and CroSloEngual BERT: less is more in multilingual models. 

In Proceedings of Text, Speech, and Dialogue, TSD2020, 2020.



Use of BERT

 train a classifier built on the top layer for 

each task that you fine tune for, e.g., Q&A, 

NER, inference

 achieves state-of-the-art results for many

tasks

 GLUE and SuperGLUE tasks for NLI
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Sentence classification using BERT –

sentiment, grammatical correctness
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Two sentence classification using BERT-

inference

124



Questions and answers with BERT 
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Sentence tagging with BERT-

NER, POS tagging, SRL 
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Cross-lingual embeddings

• mostly, embeddings are trained on 

monolingual resources

• words of one language form a cloud in 

high-dimensional space

• clouds for different 

languages can be aligned

W S ≈ E or 

W1S ≈ W2E



Cross-lingual model transfer based on 
embeddings

• Transfer of tools trained on mono-lingual resources

mostly not used anymore, superseded by multilingual LLMs
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Vocabulars in LLMs

• Tokenization depends on the dictionary 

• The dictionary is constructed statistically (SentencePiece algorithm)

• Sentence: “Letenje je bilo predmet precej starodavnih zgodb.”

• SloBERTa: 

'▁Le', 'tenje', '▁je', '▁bilo', '▁predmet', '▁precej', '▁staroda', 'vnih', '▁zgodb', '.’

• mBERT: 

'Let', '##en', '##je', 'je', 'bilo', 'pred', '##met', 'pre', '##cej', 'star', '##oda', '##vnih', 
'z', '##go', '##d', '##b', '.'

129

Ulčar, M., & Robnik-Šikonja, M. (2021) Training dataset and dictionary sizes matter in BERT models: The case of Baltic
languages. In International Conference on Analysis of Images, Social Networks and Texts (pp. 162-172)



Multilingual LLMs

• Pretrained on multiple languages simultaneously

• multilingual BERT supports 104 languages by 
training on Wikipedia

• XLM-R was trained on 2.5 TB of texts

• allow cross-lingual transfer

• often solve the problem of insufficient training 
resources for less-resourced languages
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predsednik je danes najavil ...

131

Using multilingual models

Pretraining Fine-tuning Classification

Zero-shot transfer and few-shot transfer



What LLMs learn?

• We would like to travel to [MASK], ki je najlepši otok v Mediteranu.

SloBERTa: ..., Slovenija, I, Koper, Slovenia

CSE-BERT: Hvar, Rab, Cres, Malta, Brač

XLM-R: Mallorca, Tenerife, otok, Ibiza, Zadar

mBERT: Ibiza, Gibraltar, Tenerife, Mediterranean, Madeira

BERT (en): Belgrade, Italy, Serbia, Prague, Sarajevo
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Embed all the things!

 Neural networks require numeric input

 Embedding shall preserve relations from the original space

 Representation learning is a crucial topic in nowadays 
machine learning

 Lots of applications whenever enough data is available to 
learn the representation

 In text, BERT-like models dominate for embeddings

 Similar ideas applied to texts, speech, graphs,
electronic health records, relational data, 
time series, etc.
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Transformer

134



T5 (Text-To-Text Transfer Transformer) models

135

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y,  Li, W. & Liu, P. J. (2020). Exploring the limits of 
transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140), 1-67.
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Decoder only models

GPT, GPT-2, GPT-3, 
ChatGPT, GPT-4

 LLaMA, LLaMA-2, 
LLaMa-3 

MPT, Falcon

 Mistral and Mixtral

OPT, Bloom

Gemma and 
Gemini

13
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GPT family

• GPT: Generative Pre-trained 
Transformers

• use only the decoder part of 
transformer

• pretrained for language 
modeling (predicting the next 
word given the context)

• Potential shortcoming: 
unidirectional, does not 
incorporate bidirectionality

• “What are those?” he said while 
looking at my crocs.

138



Transformer as a language model

139
• Can be computed in parallel



Autoregressive generators
• priming the generator with the context

• can be used also in summarization, QA and other generative 
tasks 140



GPT-2 and GPT-3
• few architectural changes, layer norm now applied to input of 

each subblock

• GPT-3 also uses some sparse attention layers

• more data, larger batch sizes (GPT-3 uses batch size of 3.2M)

• the models are scaled:

• see demos at https://transformer.huggingface.co/
141



In-context learning 

• GPT-2 and GPT-3 were the first models where one can ditch 
the “pre-train and fine-tune” training paradigm of GPT;

• GPT-2 explores unsupervised zero-shot learning, whereas in 
GPT-3 the authors expand the idea into in-context learning;

• Use text input to condition the model on task description and 
some examples with ground truth.

• Uses zero-shot learning, one-shot learning, few-shot learning 
(as many examples as they can fit into the context, usually 10-
100)

• No gradient updates are performed.

• A sort of associative lookup
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Huge generative language models

• ChatGPT, OpenAI, Nov. 2022
based on GPT-3.5 with additional training for 
dialogue

• uses instruction-tuning and RLHF 
(reinforcement learning with human feedback)

• demo: https://chat.openai.com/

• huge public impact, possibly disruptive for 
writing professions, learning, teaching, scientific 
writing

• GPT-4, 2023: even larger, allows longer context, 
image input
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RLHF: idea

• Reinforcement Learning with Human Feedback
• A problem: Human feedback is not present 

during training
• Idea: Train a separate model on human 

feedback, this model can generate a reward to 
be used during training of LLM

• Three stages:
1. Pretraining a language model (LM),
2. Gathering data and training a reward model, and
3. Fine-tuning the LM with reinforcement learning.

146
Nathan Lambert, Louis Castricato, Leandro von Werra, Alex Havrilla: "Illustrating Reinforcement Learning from Human Feedback (RLHF)",

Hugging Face Blog, 2022.



RLHF: the reward model 1/2 

• input: a sequence of text, 
e.g., produced by LM and
optionally improved by 
humans

• output: a scalar reward, 
representing the human 
preference of the text (e.g., a 
rank of the answer)

• the reward model could be 
an end-to-end LM, or the 
model ranks outputs, and the 
ranking is converted to 
reward
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RLHF: the reward model 2/2 

• the training dataset are 
pairs of prompts and 
(human improved) LM 
responses, e.g., 50k 
instances

• humans rank the 
responses instead of 
producing the direct 
reward as this produces 
better calibrated scores 
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RLHF: fine-tuning with RL

• RL does not change 
all parameters, most 
of parameters are
frozen

• the algorithm: 
Proximal Policy 
Optimization (PPO)
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NLP application examples
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Sentiment analysis (SA)

 Definition: a computational study of opinions, sentiments, 

emotions, and attitudes expressed in texts towards an 

entity.

 Purpose: detecting public moods, i.e. understanding the 

opinions of the general public and consumers on social 

events, political movements, company strategies, 

marketing campaigns, product preferences etc.

 Part of Affective Computing (emotion, mood, personality 

traits, interpersonal stance, attitude) 

 Can be target-based or general

15
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SA: getting and preprocessing data

 Frequent data sources:

 Twitter-X, forum comments, product review sites, company’s 

Facebook pages

 Data cleaning

 quality assessment, annotator (self-) agreement

 preprocessing: tokenization, emojis, links, hashtags, etc,

15
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SA tasks

 sentiment classification (binary (polarity), ternary, n-
ary

 subjectivity classification (vs. objectivity)

 review usefulness classification

 opinion spam classification

 emotion analysis

 hate speech, offensive speech, 
socially unacceptable speech

 stance detection

15

3



Emotional

states in 

English 

fiction

15
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Public opinion surveys

Brendan O'Connor, Ramnath Balasubramanyan, Bryan R. Routledge, and Noah A. Smith. 2010. 

From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series. In ICWSM-2010

15
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Twitter sentiment vs. Gallup on consumer sentiment



Statistical machine translation

 non-neural approach: no longer used in practice but gives insight 
of what is needed

 idea from the theory of information

 we translate from foreign language F to English E

 a document is translated based on the probability distribution 
p(e|f), i.e. the probability of the sentence e in target language 
based on the sentence in source language f

 Bayes rule
arg maxe p(e|f) = arg maxe p(f|e) p(e) / p(f)

 p(f) can be ignored as it is a constant for a given fixed sentence

 traditional (non-neural) approaches split the problem into 
subproblems

 create a language model p(e)

 a separate translation model p(f|e) 

 decoder forms the most probable e based on f

15
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Noisy channel model

 given English sentence e

 during transmission over a noisy channel the 

sentence e is corrupted and we get sentence in a 

foreign language f, which we are able to observe

 to reconstruct the most probable sentence e we 

have to figure out: 

 how people speak in English (language model), p(e) and 

 how to transform a foreign language into English (translation 

model), p(f|e)

15
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Noisy channel

 reasoning goes back

15
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Language model

 each target (English) sentence e is assigned a 

probability p(e)

 estimation of probabilities for the whole 

sentences is not possible (why?), therefore we 

use language models, e.g., 3-gram models or 

neural language models

15
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Translation model

we have to assign a probability of p(f|e), which is a 
probability of a foreign language sentence f, given 
target sentence e.

we search the e which maximizes p(e) * p(f|e)

 traditional MT approach: using translation corpus we 
determine which translation of a given word is the 
most probable

we take into account the position of a word and 
how many words are needed to translate a given 
word

16
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Neural machine translation (NMT)

 sequence to sequence machine translation 

(seq2seq)

 end-to-end optimization



Encoder-Decoder model

16
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Seq2Seq for NMT
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Encoder-decoder for sequences

16
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Encoder-decoder for NMT

16
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Training NMT

 using transformers

 softmax for output

we maximize

P(output sentence | input sentence)

we sum errors on all outputs

 backpropagation

 training on correct translations

 as the translation, we return a sequence of words 

with the highest probability (not necessary 

greedily)

16
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NMT with attention
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Text summarization

16
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Text summarization

 Evaluation: 

 ROUGE scores, 

 BERTScore, 

 with QA: 

 question generation, 

 searching for answers in the summary

 human

 LLMs

 Short and long texts

 cross-lingual

16
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Summarizers – Pegasus

 An example of a different, successful transformer model

 Transformer BART model

 encoder-decoder architecture

 text garbling and reconstruction

 Auxiliary tasks: masked language model and missing sentence generation

 Demo: https://ai.googleblog.com/2020/06/pegasus-state-of-art-model-for.html

(Zhang et al., 2019)



XL summarization 
architecture

Žagar, A., & Robnik-Šikonja, M. (2022). Cross-lingual transfer of abstractive summarizer to less-resource language. Journal of Intelligent 
Information Systems, 58(1), 153-173.



Ensemble methods

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja

Intelligent Systems, Edition 2024



Contents

• about ensembles: how & why

• bagging and random forests

• boosting

• stacking

• a few other ideas
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How ensembles works?

• learn large number of basic (simple) classifiers 

• merge their predictions

• the most successful methods
• bagging (Breiman, 1996)

• boosting (Freund & Shapire, 1996)

• random forest (Breiman, 1999)

• XGBoost (eXtreme Gradient Boosting) (Chen & Guestrin, 2016)
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Why ensembles work?

• we need different classifiers
• different in a sense that they produce correct predictions on different 

instances

• the law of large numbers does the rest

• guidelines for basic classifiers 
• different 

• as strong as possible, but at least weak 

• a weak classifier is an expression from computational learning 
theory (COLT), it means a classifier whose performance is at 
least ∈ > 0 better than a random classifier 
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Bagging and random forests

• Bagging
• sample selection with bootstrapping

• Bagging for regression trees

• Bagging for classification trees

• Out-of-bag error estimation

• Variable importance: relative influence plots

• Random Forests

5



Bagging

• Decision trees suffer from high variance!
• If we randomly split the training data into 2 parts, and fit decision trees on both parts, the 

results of different runs could be quite different

• We would like to have models with low variance

• To solve this problem, we can use bagging (bootstrap aggregating).

6



Bootstrapping
• Resampling of the observed dataset (and of equal size to the observed 

dataset), each of which is obtained by random sampling with 
replacement from the original dataset.
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• Draw instances from a dataset with replacement

• Probability that we do not pick an instance after N 
draws

that is, only 63.2% of instances are used in one draw

Bootstrapping
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What is bagging?

• Bagging is a powerful idea based on two things: 

• Averaging: reduces variance!

• Bootstrapping: plenty of training datasets! 

• Why does averaging reduces variance?

• Averaging a set of observations reduces variance. 

• Given a set of n independent observations Z1, …, Zn, each with 
variance σ2,  the variance of the mean 𝑍 of the observations is 
given by Τ𝜎2

𝑛 .

9



How does bagging work?

• Generate B different bootstrapped training datasets

• Train the statistical learning method on each of the B training datasets, and 
obtain the prediction 

10



Bagging for regression trees

• Construct B regression trees using  B bootstrapped training datasets

• Average the resulting predictions

• The trees are not pruned, so each individual tree has high variance but low bias. 

• Averaging these trees reduces variance, and thus we end up lowering both 
variance and bias ☺
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Bagging for classification trees

• Construct B decision trees using  B bootstrapped training datasets

• For prediction, there are two approaches: 
1. Record the class that each bootstrapped data set predicts and provide an overall prediction 

to the most commonly occurring one (majority vote).

2. If our classifier produces probability estimates, we can just average the probabilities and 
then predict to the class with the highest probability.

• Both methods work well. 
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A comparison of error rates

13

• Here the green line 
represents a simple majority 
vote approach

• The purple line corresponds 
to averaging the probability 
estimates.

• Both do far better than a 
single tree (dashed red) and 
get close to the Bayes error 
rate (dashed grey).



Out-of-bag error estimation

• Since bootstrapping involves random selection of subsets of observations to build 
a training data set, then the remaining non-selected part could be the testing 
data. 

• On average, each bagged tree makes use of around 1- 1/e ≈ 63% of the 
observations, so we end up having 1/e ≈ 37% of the observations useful for 
testing
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Variable importance measure

• Bagging typically improves the accuracy over prediction using a single tree, but it 
is now hard to interpret the model! 

• We have hundreds of trees, and it is no longer clear which variables are most 
important to the procedure

• Thus bagging improves prediction accuracy at the expense of interpretability

• But, we can still get an overall summary of the importance of each predictor using 
relative influence plots
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Relative influence plots

• How do we decide which variables are most useful in predicting the 
response?
• We can compute something called relative influence plots.

• These plots give a score for each variable. 

• These scores represents the decrease in MSE when splitting on a particular 
variable

• A number close to zero indicates the variable is not important and could be 
dropped.

• The larger the score the more influence the variable has.  
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Example: Housing data
• Median Income is 

by far the most 
important variable.

• Longitude, Latitude 
and Average 
occupancy are the 
next most 
important.

17



Random forests

• It is a very efficient statistical learning method

• It builds on the idea of bagging, but it provides an improvement 
because it de-correlates the trees

• How does it work?
• Build a number of decision trees on bootstrapped training sample, 

• When building these trees, each time a split in a tree is considered, a random 
sample of m predictors is chosen as split candidates from the full set of p
predictors.

• Usually

18

pmpm 2log1or  +



Why are we considering a random sample of m predictors 
instead of all p predictors for splitting?

• Suppose that we have a very strong predictor in the data set along with a number 
of other moderately strong predictors, then in the collection of bagged trees, 
most or all of them will use the very strong predictor for the first split!

• All bagged trees will look similar. Hence all the predictions from the bagged trees 
will be highly correlated

• Averaging many highly correlated quantities does not lead to a large variance 
reduction, and thus random forests “de-correlates” the bagged trees leading to 
more reduction in variance

19



Properties

• low classification (and regression) error 

• no overfitting

• robust concerning the noise and the number of attributes

• relatively fast

• learning instances not selected with bootstrap replication are used for 
evaluation of the tree (oob = out-of-bag evaluation)

20



Out-of-bag evaluation

• on average 1/e ~ 37% of the learning set is not used to train 
each of the basic classifiers

• classification margin

• mr is estimated with all classifiers where x is in oob set 

• strength of the forest = average margin over training or OOB 
set

• correlation of the trees in forest 

• we want high strength and low correlation
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OOB-error estimate

22

• with large number of 
trees, the OOB estimate is 
roughly equivalent to the 
CV error estimate

• computationally much 
cheaper than CV

• still overly optimistic

Heart data set



RF attribute evaluation

• evaluation of attribute A is the difference between
• strength of the forest and

• strength of the forest when values of A are randomly shuffled

• evaluated on the OOB set

• detects also strong conditional dependencies

• works also on an instance-level like nomogram (evaluates only the 
trees where the instance is in the OOB set)
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Similarity of instances

• build instance similarity matrix

• when two instances end in the same leaf of the tree we increase their similarity 
score

• average over all trees gives similarity measure

• we use that similarity measure to:
• detect outliers

• determine typical cases for each class

• scaling

• missing values

• clustering

• visualization

24



Random forest with different values of “m”
• Notice: when 

random forests 
are built using 
m = p, then this 
amounts to 
bagging.

26Gene expression data (15 classes)



Boosting
• another ensemble method

• grows trees sequentially: each added tree uses information about 
errors of previous trees

27



Pseudocode for boosting in regression
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Boosting

• each tree takes into account residuals (i.e. errors) of previous trees

• each tree is small, containing only d splits (e.g., d=1, decision stumps) 

• learning is slow, controlled by λ

• Parameters of boosting in regression
• The number of trees B, selected with, e.g., CV; boosting can overfit.

• The shrinkage parameter λ, a small positive number (e.g., 0.01 or 0.001), 
problem dependent; small λ requires large B to achieve good performance

• The number d of splits in each tree, which controls the complexity of the 
boosted ensemble. Often d = 1 works well, but d also controls interaction 
order (d splits can contain at most d variables).
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Boosting performance

30

Gene expression data (15 classes)
error of single tree is approx. 0.24, std. error around 0.02



Boosting in classification

• AdaBoost, Freund & Shapire, ICML, 1996
• training instances are weighted according to the success of 

their classification in the previous iteration
• increase weight of misclassified instances

• decrease weight of correctly classified instances

• the learning focus is transferred to the most difficult instances

• final classification is a weighted voting of basic classifiers

• deterministic algorithm, works because training sets are 
different 

• mostly better than bagging

• this original version can suffer from overfitting but 
there are better variants

31



AdaBoost (Freund and Schapire, 1996)

• Given a set of d class-labeled instances, (X1, y1), …, (Xn, yn)

• Initially, all the weights of instances are set the same (1/n)

• Generate k classifiers in k rounds.  At round i,

• Instances from D are sampled (with replacement) or reweighted to form a training 
set Di of the same size

• Each instance’s chance of being selected is based on its weight

• A classification model Mi is derived from Di

• Its error rate is calculated using Di as a test set

• If an instance is misclassified, its weight is increased, otherwise it is decreased

• Error rate: err(Xj) is the misclassification error of instance Xj. 
Classifier Mi error rate is the sum of the weights of the misclassified instances: 

• The weight of classifier Mi’s vote is
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AdaBoost Example
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XGBoost – eXtreme Gradient Boosting

34

https://xgboost.readthedocs.io/en/latest/build.html#r-package-installation

Chen & Guestrin(2016), XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining https://arxiv.org/abs/1603.02754



Other possibilities for tree ensembles

• sampling in RF: 
• p-sampling without replacement (sampling the proportion of p instances, e.g., p=10%)

• limiting the size of the trees in RF and bagging
• more trees needed

• reduced computational complexity

• regularization
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Weighting of the trees

• not all trees are equally important (absolutely and in all 
parts of an instance space)

• weight the trees according to the data

• assume linear combination of base coefficients

• solve for coefficients a

𝐹(𝑥, 𝑎) = 𝑎0 +෍

𝑗=1

𝑇

𝑎𝑗 𝑡𝑗(𝑥)

36



Penalization

• direct minimization gives poor generalization, 
therefore penalize

ො𝐚 = argmin
𝑎

1

𝑁
෍

𝑖=1

𝑛

𝐿 (𝑦𝑖,𝑎0 +෍

𝑗=1

𝑇

𝑎𝑗 𝑡𝑗(𝑥𝑖))

ො𝐚(𝜆) = argmin
𝑎

1

𝑁
෍

𝑖=1

𝑛

𝐿 (𝑦𝑖,𝑎0 +෍

𝑗=1

𝑇

𝑎𝑗 𝑡𝑗(𝑥𝑖)) + 𝜆𝑃(𝐚)
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Common penalty functions

• ridge regression

• lasso, sure-shrink

• solve with gradient descent algorithms (Friedman & Popescu, 2003)

𝑃2(𝐚) =෍

𝑗=1

𝑇

𝑎𝑗
2

𝑃1(𝐚) =෍

𝑗=1

𝑇

𝑎𝑗
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Local weighting

• regularization: global importance of base models

• local importance: local regularization, weighting with margin of similar instances
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Locally weighted voting for RF

• observation: not all trees are equally good in all parts of the problem 
space

• opportunity: use OOB instances to locally evaluate the quality of trees

• locality: forest defines the similarity between instances
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Weighted voting algorithm for RF

• in classification of a new instance
• find t most similar instances 

• classify each of the similar instances with the trees where it is in the OOB set, 
and record the margin for the trees

• compute weights of the trees as the average recorded margin (for trees with 
negative margin set the weight to zero) 

• forest classification is the weighted voting of the trees

41Marko Robnik-Šikonja: Improving random forests. In Proceedings of European conference on machine learning ECML’04, pp. 359-370. 2004.



Naïve Bayes based ensembles

• Naive Bayes is a probabilistic classifier

• assuming that the attributes are independent given the class
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Semi naïve Bayes (SNB)

• besides the class, SNB allows dependence on some attributes

• Example: 1-dependence estimator (ODE), where X1 is “super-parent” 

43



AODE ensemble

• Averaged One-Dependence Estimator (AODE) (Webb et al. 2005)

• SPODE: Super-Parent One Dependence Estimator – Semi naive Bayes 
where attributes are dependent on class and one more attribute

• AODE is an ensemble of SPODE classifiers, where all attributes in turn 
are used in SPODE classifier and their results are averaged

• Compared to naive Bayes, it has higher variance but lower bias
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Stacking
• A method to combine 

heterogeneous predictors

• Predictions of base learners 
(level-0 models) are used as 
input for meta learner (level-1 
model)

• Base learners are usually 
different learning schemes
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Stacking scheme

instance1

BC1

BC2

BCn

meta instances

instance1

0

0.92

0.85

0 0.92 0.85

BC1 BC2 BCn… Class

1



Stacking

instance2

BC1

BC2

BCn

meta instances

instance1

1

0.01

0.23

0 0.92 0.85

BC1 BC2 BCn… Class

1

instance2 1 0.01 0.23 0



Stacking

meta instances

instance1 0 0.92 0.85

BC1 BC2 BCn… Class

1

instance2 1 0.01 0.23 0

Meta Classifier



Actual stacking

• Predictions on the training data can’t be used to generate
data for level-1 model! Why not?

• The reason is that the level-0 classifier that better fit
training data will be chosen by the level-1 model!

• Thus, k-fold cross-validation-like scheme is employed. An
example for k = 3!

train train test

train test train

test train train

test test testMeta Data



Stacking meta-learner

• Which algorithm to use to generate meta learner?

• In principle, any learning scheme can be applied

• For level-1 classifier Ting & Witten (1999) recommend multiple response
linear regression (MRLE, note this is a regressor)

• a classification problem with C classes is transformed into C linear
regression problems, where response for problem i is 1 if the class equals
i, otherwise it is 0

• to classify a new instance employ all C linear models, the prediction with
highest value is selected as the output



Mixture of Experts (MoE)

• Ensemble technique, useful in very large problems
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MoE in transformers
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MARS - Multivariate Adaptive Regression Splines 

• Generalization of stepwise linear regression

• Modification of trees to improve regression performance

• Able to capture additive structure

• Not tree-based



MARS base models

• Additive model with adaptive set of basis vectors

• Basis built up from simple piecewise linear functions

• Set “C” represents candidate set of linear splines, with “knees” at each data point Xi. 

• Models are built with elements from C or their products.

• Basis collections C:  |C| = 2 * N * p

( )+− tx( )+− xt

t

𝐶 = 𝑋𝑗 − 𝑡
+
, 𝑡 − 𝑋𝑗 + 𝑡∈ 𝑥1𝑗,𝑥2𝑗,…𝑥𝑁𝑗 𝑗=1,2,…,𝑝



MARS procedure

Model has the form:

1. Given a choice for the ℎ𝑚, the coefficients 𝛽 are chosen by the 
standard linear regression.

2. Start with ℎ0 𝑋 = 1
All functions in C are candidate functions.

3. At each stage, consider as a new basis function pair all products of 
a function ℎ𝑚 in the model set M, with one of the reflected pairs in 
C.

4. We add to the model terms of the form:

𝛽𝑀+1ℎ𝑙 𝑋 ⋅ 𝑋𝑗 − 𝑡
+
+ 𝛽𝑀+2ℎ𝑙 𝑋 ⋅ 𝑡 − 𝑋𝑗 +

, ℎ𝑙 ∈ 𝑀

ℎ𝑚 𝑋 ⋅ 𝑡 − 𝑋𝑗 +
ℎ𝑚 𝑋 ⋅ 𝑋𝑗 − 𝑡

+

𝑓 𝑋 = 𝛽0 + ෍

𝑚=1

𝑀

𝛽𝑚ℎ𝑚 𝑋



MARS, step 1

• On each step, add the term, which reduces residual error most, into M

• Repeat steps (until, e.g., |M| >= threshold)
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MARS, choosing number of terms

• Large models can overfit.

• Backward deletion procedure: delete terms which cause the smallest 
increase in residual squared error, to get a sequence of models.

• Pick Model using Generalized Cross Validation:

• 𝑀 𝜆 is the effective number of parameters in the model. 
C=3, r is the number of basis vectors, and K knots

• Choose the model which minimizes 𝐺𝐶𝑉(𝜆)

𝐺𝐶𝑉 𝜆 =
σ𝑖=1
𝑁 𝑦𝑖 − መ𝑓 𝑥𝑖

2

1 − Τ𝑀 𝜆 𝑁 2

𝑀 𝜆 = 𝑟 + 𝑐𝐾



MARS summary

• Basis functions operate locally

• Forward modeling is hierarchical, multiway products are built up 
only from existing terms

• Each input appears only once in each product

• Useful option is to set limit on order of operations. Limit of two 
allows only pairwise products. Limit of one results in an additive 
model



Kernel methods
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Support vector machines

• Imagine a situation where you have a two class classification problem with 
two predictors X1 and X2.

• Suppose that the two classes are “linearly separable” i.e. one can draw a 
straight line in which all points on one side belong to the first class and 
points on the other side to the second class.

• Then a natural approach is to find the straight line that gives the biggest 
separation between the classes, i.e. the points are as far from the line as 
possible

• This is the basic idea of support vector classifiers.

2



An illustration 
• C is the minimum 

perpendicular distance 
between each point and the 
separating line.

• We find the line which 
maximizes C.

• This line is called the “optimal 
separating hyperplane”

• The classification of a point 
depends on which side of the 
line it falls on. 
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More than two dimensions

• This idea works just as well with more than two predictor variables. 

• For example, with three predictors you want to find the plane that produces the 
largest separation between the classes.

• With more than three dimensions it becomes hard to visualize a plane but it still 
exists. In general they are caller hyper-planes. 

4



Non-separating classes

• In practice, it is not usually possible to find a hyper-plane that perfectly 
separates two classes.

• In other words, for any straight line or plane that we draw, there will always be 
at least some points on the wrong side of the line.

• In this situation, we try to find the plane that gives the best separation between 
the points that are correctly classified, subject to the points on the wrong side 
of the line not being off by too much.

• It is easier to see with a picture!
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Non-separating example

• Let ξ*
i represent the amount that the 

i-th point is on the wrong side of the 
margin (the dashed line).

• Then we want to maximize C,
subject to

• The constant is a tuning parameter 
that we choose.

6
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A simulation example with a small constant

• The distance between the 
dashed lines represents 
the margin or 2C.

• The purple lines represent 
the Bayes decision 
boundaries
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The same example with a larger constant
• Using a larger constant allows for a 

greater margin and creates a slightly 
different classifier.

• Notice, however, that the decision 
boundary must always be linear.
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Non-linear support vector classifier

• The support vector classifier is fairly easy to think about. However, because it only 
allows for a linear decision boundary, it may not be all that powerful.

• Recall that linear regression is extended to non-linear regression using a basis 
function i.e.

9

𝑌𝑖 = 𝛽0 + 𝛽1𝑏1(𝑋𝑖) + 𝛽2𝑏2(𝑋𝑖) + ⋯+ 𝛽𝑝𝑏𝑝(𝑋𝑖) + 𝜀𝑖



A basis approach

• Conceptually, we can take a similar approach with the support vector classifier.

• The support vector classifier finds the optimal hyper-plane in the space 
spanned by X1, X2,…, Xp.

• Instead, we can create transformations (or a basis) b1(x), b2(x), …, bM(x) and find 
the optimal hyper-plane in the space spanned by b1(X), b2(X), …, bM(X).

• This approach produces a linear plane in the transformed space but a non-
linear decision boundary in the original space. 

• This is called the support vector machine classifier.
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Basis example

• Suppose we use polynomials as bases
𝑋1, 𝑋2, 𝑋1

2, 𝑋2
2, 𝑋1𝑋2, 𝑋1

3, 𝑋1𝑋2
2, …

• We go from p dimensional space to M>p dimensional space and fit 
the SVM classifier in the enlarged space

• For the bases (𝑋1, 𝑋2, 𝑋1
2, 𝑋2

2, 𝑋1𝑋2) this gives a non-linear classifier in 
the original space

𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋1
2 + 𝛽4𝑋2

2 + 𝛽5𝑋1𝑋2 = 0

11



In reality

• While conceptually the basis approach is how the support 
vector machine works, there are some technical details which 
means that we don’t actually choose b1(x), b2(x), …, bM(x).

• Instead we choose a kernel function which takes the place of 
the basis.

• Kernel operates on inner products between instances

• Common kernel functions include

• Linear

• Polynomial

• Radial Basis

• Sigmoid

12



Polynomial kernel on Sim data

• Using a polynomial kernel, we 
now allow SVM to produce a 
non-linear decision boundary.

• Notice that the test error rate is 
a lot lower.

13



Radial basis kernel
• Using a radial basis kernel you often get an even 

lower error rate.
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SVM for more than two classes

• The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?

• One Versus All (OVA)
Fit K different 2-class SVM classifiers fk(x), k = 1,...,K; each class versus
the rest. Classify new x to the class for which fk(x) is largest.

• One Versus One (OVO)

Fit all 
𝐾
2

pairwise classifiers fuv(x). Classify new x to the class that 

wins the most pairwise competitions.

• Which to choose? 
If K is not too large, use OVO.
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SVM for regression
• As in classification, seek and optimize the generalization bounds given 

for regression. 

• The loss function ignores errors which are situated within the certain 
distance of the true value; it is often called – epsilon intensive – loss 
function. 

16
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Overview of topics

• Visualization and knowledge discovery.

• General methodology for explaining predictive models.

• Model level and instance level explanations, methods EXPLAIN and 
IME.

2



Visualization

• 1st rule of data mining: know your data.

• Therefore: visualizations, getting background data.

• Visualize: distributions of individual variables, their relations, etc.

• For high dimensional data sets one can use scaling, e.g. UMAP or t-SNE

• Clustering is useful in supervised tasks to get insight into the relation 
between predicted values Y and basic groups in the data. If unrelated,
feature set might need amendments.

3



Visualizations
• Human visual perception has certain limitations:

• we see what we want to see

• we see what we see often

• it is more difficult to notice unexpected patterns

• practice in detection of unknown

• use visualizations which expose “the unknown”

4



Human pattern recognition
• We see inexistent patterns because we WANT to see them (we feel 

lost without them).

5



Facts about simple visualizations

• Pie charts are a bad choice: hard to read, similar colors, slope, legend 
is too far away

• Bar chart is much better

6

The best pie chart



Pie charts jokes

• notoriously bad

7

The best pie chart



Facts about simple visualizations
• Bar charts, box plots can be OK

• 3D graphs are almost never OK for 2D info: spider plot, bowl of noodles

• Take care to be clear and do not manipulate

• A more detailed examples and recommendations
https://github.com/cxli233/FriendsDontLetFriends
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Understanding

9

Walid Saba, "Machine Learning 
Won't Solve Natural Language 
Understanding", The Gradient, 
2021.



Understanding ML models is difficult

10



Predictive modeling scenario
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Explanation of predictions

• a  number of successful prediction algorithms 
exist (SVM, boosting, random forests, 
neural networks), but to a user they are
a black box

• many fields where users are very much concerned with the
transparency of the models: medicine, law, consultancy, 
public services, etc.

• Some explanation methods are applicable to arbitrary 
predictors

12



Model comprehensibility

• decision support: model comprehensibility is important to gain users‘ 
trust

• knowledge acquisition

• some models are inherently interpretable and comprehensible

• decision and regression trees, classification and regression rules, linear
and logistic regression 1/(1+exp(-(b0+b1x1+...bpxp))

• really?

13



Domain level explanation

• trying to explain the
“true causes and effects”
• physical processes

• stock exchange events

• usually unreachable except for artificial problems with known relations
and generator function

• some aspects are covered with attribute evaluation, detection of 
redundancies, ...

• targeted indirectly through the models

14



Model-based explanations

• make transparent the prediction process of a particular model

• the correctness of the explanation is independent of the 
correctness of the prediction but

• better models (with higher prediction accuracy) enable in 
principle better explanation at the domain level

• explanation methods are interested only in the explanation at 
the model level and leave to the developer of the model the 
responsibility for its prediction accuracy

15



Two flavours of explanation techniques

• model specific
• especially used for

deep neural networks

Melis, D.A. and Jaakkola, T., 2018. Towards robust interpretability with self-explaining neural networks. In Advances in 
Neural Information Processing Systems (pp. 7786-7795).

• model agnostic
• can be used for any predictor, 

• based on perturbation of the inputs
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Idea of perturbtion-based explanations

• importance of a feature or a group of features in a specific model can 
be estimated by simulating lack of knowledge about the values of the 
feature(s)

17



Instance-level explanation

• explain predictions for each instance 
separately 
• this is what practitioners applying models are 

interested in

• presentation format: impact of each feature 
on the prediction value

• model-based

18



Model-level explanation
• the overall picture of a problem the model 

conveys
• this is what knowledge extractors are 

interested in

• presentation format: overall importance of 
each feature, 
but also rules, trees

• model-based

19



The method EXPLAIN

• “hide” one attribute at a time

• estimate contribution of attribute from

Robnik-Sikonja, M., & Kononenko, I. (2008). Explaining classifications for individual instances. 
IEEE Transactions on Knowledge and Data Engineering,, 20(5), 589-600.
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Explaining EXPLAIN

• assume an instance (x, y); components of x are values of attributes Ai

• for a new instance x, we want to know what role each attribute’s value play
in the prediction model f, i.e. to what extend it contributed to the
classification f(x)

• for that purpose
• we compute f(x \ Ai), the model's prediction for x without the knowledge 

of the event Ai = ak (marginal prediction)
• we comparing f(x) and f(x \ Ai) to assess importance of Ai = ak

• the larger the the difference the more important the role of Ai=ak in the 
model

• f(x) and f(x \ Ai) are source of explanations

21



Evaluation of prediction differences

• how to evaluate f(x) - f(x \ Ai) 

• in classification, we take f(x) in the form of probability

1.difference of probabilities

probDiffi(y|x)  = p(y|x)  - p(y|x\ Ai)

2.information gain (Shannon, 1948)

infGaini(y|x)  = log2 p(y|x)  - log2 p(y|x\ Ai)

3. weight of evidence also log odds ratio (Good, 1950)

odds(z) = p(z) / (1 – p(z))

WEi(y|x)  = log2 odds(y|x)  - log2 odds(y|x\ Ai)
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Implementation

• p(y|x): classify x with the model

• p(y|x\ Ai) – simmulate lack of knowledge of Ai in the model
• replace with special NA value: good for some, mostly bad, left to the mercy of 

model’s internal mechanism

• average prediction across perturbations of Ai

p(y|x\ Ai) =  a p(Ai=as) p(y|x Ai = as) 

• use discretization for numeric attributes

• use Laplace correction for probability estimation

• we could build a separate model for each p(y|x\ Ai)

23



Weaknes of EXPLAIN

• “hide” one attribute at a time

• estimate contribution of attribute from

• weakness: if there are redundant ways to express concept, credit is not 
assigned

• example: 

C = A1 v A2A3

explanation for instance (A1=A2=A3=1)

24



The method IME

• (Interactions-based Method for Explanation)

• “hide” any subset of attributes at a time (2a subsets!)

• the source of explanations is the difference in prediction using a subset of 
features Q and an empty set of features {}

• the feature gets some credit for standalone contributions and for contributions 
in interactions

25



IME: sum over all subsets

• the contributions are 

26
Štrumbelj, E., Kononenko, I. & Robnik-Šikonja, M., Explaining instance classifications with interactions of subsets of feature values. 
Data & Knowledge Engineering, Oct. 2009, 68(10):886-904



Game theory analogy

• coalitional game of a players (attributes)

• players form coalitions (i.e. interactions)

• how to distribute the payout to the members of a coalition? (how to 
assign the credit for prediction)

• The Shapley value is the unique payoff vector that is
• efficient (exactly splits payoff value), 

• symmetric (equal payments to equivalent players)

• additive (overall credit is a sum of participating in coalitions), and

• assigns zero payoffs to dummy players (no contribution to any coalition).

27



Shapley value

• Shapley value can be efficiently approximated

28



Solution for IME: sampling

• Shapley value can expressed in an alternative formulation

• 𝜋 𝑎 is the set of all ordered permutations of a

• Prei(O) is the set of players which are predecessors of player i in the 
order O ∈ 𝜋 𝑎

• smart sampling over subsets of attributes

• computationally feasible approach

29

Štrumbelj, E., & Kononenko, I. (2010). An efficient explanation of individual classifications using game theory. 
Journal of Machine Learning Research, 11, 1-18



IME algorithm

• by measuring the variance of contributions, we can determine the 
necessary number of samples for each attribute

30



Visualization of explanations

• instance-level explanation on Titanic data set

31Robnik-Šikonja, M. (2015), ExplainPrediction: Explanation of Predictions for Classification and Regression. 
R package version 1.3.0. http://cran.r-project.org/package=ExplainPrediction



Visualization of explanations

• model-level explanation on Titanic data set

32



LIME explanation method

• Local Interpretable Model-agnostic Explanations)

• perturbations in the locality of an explained instance

33

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should i trust you?: Explaining the predictions of any classifier. In Proceedings of 
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135-1144.



LIME explanation method

• optimize a trade-off between local fidelity of explanation and its 
interpretability

• L is a local fidelity function, f is a model to be explained, g is an 
interpretable local model g (i.e. linear model), 𝜋 𝑥, 𝑧 is proximity 
measure between the explained instance x and perturbed points z in its 
neighborhood, Ω is a model complexity measure
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LIME details

• LIME samples around the explanation instance x to draw samples z 
weighted by the distance 𝜋 x, z

• samples z are used to training an interpretable model g (linear model)

• the squared loss measures local infidelity

• number of non-zero weights is complexity 

• samples are weighted according to the Gaussian distribution of the 
distance between x and z
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LIME strengths and weaknesses

• faster than IME 

• works for many features, including text and images

• no guarantees that the explanations are faithful and stable

• neighborhood based: a curse of dimensionality 

• may not detect interactions due to (too) simple interpretable local 
model (linear model)
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SHAP

• SHapley Additive exPlanation

• unification of several explanation 
methods, including IME and LIME

• KernelSHAP: based on Shapley values which are estimated using a 
LIME style linear regression

• faster then IME but

• still uses linear model with all its strengths and weaknesses

37

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. 
In Advances in Neural Information Processing Systems (pp. 4765-4774).



Use case: breast cancer recurrence

Robnik-Šikonja, M., Kononenko, I., & Štrumbelj, E. (2012). Quality of classification explanations with PRBF. Neurocomputing, 96, 37-46.
38

Cancer recurrence within 10 years
menop binary feature indicating menopausal status
stage tumor stage 1: less than 20mm, 2: between 20mm and 50mm, 3: over 50mm
grade tumor grade 1: good, 2: medium, 3: poor, 4: not applicable, 9: not determined
histType histological type of the tumor 1: ductal, 2: lobular, 3: other
PgR level of progesterone receptors in tumor (in fmol per mg of protein) 0: 

less than 10, 1: more than 10, 9: unknown
invasive invasiveness of the tumor 0: no, 1: invades the skin, 2: the mamilla, 

3: skin and mamilla, 4: wall or muscle
nLymph number of involved lymph nodes 0: 0, 1: between 1 and 3, 2: between 4 and 9, 

3: 10 or more
famHist medical history 0: no cancer, 1: 1st generation breast, ovarian or prostate cancer

2: 2nd generation breast, ovarian or prostate cancer, 
3: unknown gynecological cancer 4: colon or pancreas cancer, 
5: other or unknown cancers, 9: not determined

LVI binary feature indicating lymphatic or vascular invasion
ER level of estrogen receptors in tumor (in fmol per mg of protein) 1: less than 5, 

2: 5 to 10, 3: 10 to 30, 4: more than 30, 9: not determined
maxNode diameter of the largest removed lymph node 1: less than 15mm, 

2: between 15 and 20mm, 3: more than 20mm
posRatio ratio between involved and total lymph nodes removed 1: 0, 2: less that 10%, 

3: between 10% and 30%, 4: over 30%
age patient age group 1: under 40, 2: 40-50, 3: 50-60, 4: 60-70, 5: over 70 years



Use case: breast cancer recurrence
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Use case: B2B sales forecasting

• Goals: improve understanding of factors influencing the outcome and improve 
the sales performance 

40
Bohanec, M., Borštnar, M. K., & Robnik-Šikonja, M. (2017). Explaining machine learning models in sales predictions. 
Expert Systems with Applications, 71, 416-428.



B2B sales attributes

41



B2B sales: drill in

42



B2B sales: EXPLAIN and IME
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B2B sales: learning from errors

44



B2B: what if

45



B2B: change of distribution
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Lessons learned in B2B

• an effort needed to overcome the users’ resistance

• human-in-the-loop is necessary to train, discuss, clean data, introduce
explanations

• with an increased use, users gain trust in the methodology

• human mental models tend to be biased

• joint interactive approach beats both humans and ML models

47



Attacks on explanations

48

• Poor sampling in explanation 
approaches makes them 
vulnerable

• Example: PCA based 
visualization of a part of the 
COMPAS dataset; the red dots 
were generated by LIME



Dieselgate attacks on explanations

49

• Defence: better sampling

Domen Vreš and Marko Robnik-Šikonja, 2021. Better sampling in explanation methods can prevent dieselgate-like deception. arXiv preprint arXiv:2101.11702.



Opportunities

• better and more focused sampling

• better local explanation models

• interactions: detect and describe

• sequences: the order of attributes is important!

• images: decison areas, super-pixels

• better visualizations: human cognitive limitations

• explanations is also domain specific, we need explanation 
datasets
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Conclusions
• many successful mechanistic explanation approaches, mostly for tabular 

classification problems

• LLMs are trained to explain their behavior for particular important problems

• lots of opportunities for improvements

• even human explanations are not necessarily comprehensible

• humans often explain by providing background or additional knowledge

• legal and practical need for explanations of ML models
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Machine Learning

• Classification:  
• Given

• Training data

• Learn
• A model for making a single prediction or decision

xnew

ynew

Classification 
Algorithm

Training Data
(x1, y1)
(x2, y2)
(x3, y3)

…

Model



Animal/Human Learning

Other?

Classification
xnew ynew

Memorization
x1 y1

Procedural

environment

decision



Procedural Learning

•Learning how to act to accomplish goals
•Given

• Environment that contains rewards

•Learn
• A policy for acting

•Important differences from classification
•You don’t get examples of correct answers
•You have to try things in order to learn



A Good Policy



Introduction to Reinforcement Learning

• Reinforcement learning (RL), questionable terminology 
stemming from behavioristic psychology (behavior 
reinforcement)

• Agent learning in the environment, performing actions

• Getting feedback from the environment (award, 
punishment), not necessary immediately

• Trying to learn a policy leading to goals

• An example: playing a game without knowing the rules; after 
1000 moves an opponent declares: you lost.



Agent

•Temporally situated

•Continual learning and planning

•Objective is to affect the environment

•Environment is stochastic and uncertain

Environment

actionstate

reward
Agent



What is Reinforcement Learning?

• Learning from interaction

• Goal-oriented learning: short term and possible long term 
awards

• Learning about, from, and while interacting with an external 
environment

• Learning what to do—how to map situations to actions—so 
as to maximize a numerical reward signal

• Agent discovers which action in what circumstances give the 
highest award

• Agent can build a model of its environment

• RL is not supervised learning, it is about trial and error 
search, exploring, getting information from environment



Supervised Learning

Supervised Learning 

System
Inputs Outputs

Training Info  =  desired (target) outputs

Error  =  (target output  – actual output)



Reinforcement Learning

RL

System
Inputs Outputs (“actions”)

Training Info  =  evaluations (“rewards” / “penalties”)

Objective:  get as much reward as possible



Key Features of RL

• Learner is not told which actions to take

•Trial-and-error search

•Possibility of delayed reward
• Sacrifice short-term gains for greater long-term gains

•The need to explore and exploit

•Considers the whole problem of a goal-directed 
agent interacting with an uncertain environment



RL successful applications
• Robocup Soccer
• Financial asset management/Inventory 

management
• Dynamic Channel assignment in mobile 

communications
• Controlling elevators, industrial controllers, 

robots …
• Robots: navigation, grasping, moving …
• Games: backgammon (TD-Gammon, 

Jellyfish), Go (AlphaGo in combination with 
deep neural networks), Atari video games, 
poker, chess

• in LLMs used in RLHF



Example video: Atari game Breakout



Example video:Robot training

Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, Sergey Levine. Learning to Walk via Deep Reinforcement Learning. 
Robotics: Science and Systems (RSS). 2019.



Components of RL
1/2

• Policy: what to do?
• Defines agents choices and actions

in a given time

• Represented with rules, table, neural networks etc.

• Result of search, planning, stochastic, etc.

• Reward: what is good?
• Feedback from environment, agent tries to maximize it

Policy

Reward

Value

Model of
environment



Components of RL
2/2

• Value: internal representation of what is good, it predicts reward 
• Agent’s expectation of what can be expected in given state (long-term)

• Implicitly contains evaluation of next states

• Value has to be learned; use repetitions and sampling to estimate the value

• Model: what follows what
• Internal representation of the environment

• Agent can evaluate values and actions without performing them

• Optional component

Policy

Reward

Value

Model of
environment



Agent from the point of view of RL

external sensations

memory

state

reward

actions

internal

sensations

RL 

agent



An Example: Tic-Tac-Toe

X XXO O

X

XO

X

O

XO

X

O

X

XO

X

O

X O

XO

X

O

X O

X

} x’s move

} x’s move

} o’s move

} x’s move

} o’s move

...

...... ...

... ... ... ... ...

x x

x

x o

x

o

xo

x

x

x
x

o

o

Assume an imperfect opponent:

—he/she sometimes makes mistakes



An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:

2. Now play lots of games.

To pick our moves, 

look ahead one step:

State         V(s) – estimated probability of winning

.5          ?

.5          ?

1        win

0        loss

0       draw

x

xxx

o
o

o
o

o
x

x

oo

o o
x

x
x

x
o

current state

various possible

next states*
Just pick the next state with the highest

estimated prob. of winning — the largest V(s);

a greedy move.

But 10% of the time pick a move at random;

an exploratory move.



RL Learning Rule for Tic-Tac-Toe

“Exploratory” move

s   –   the state before our greedy move

 s   –   the state after our greedy move

We increment each V(s) toward V(  s ) –  a backup :

V(s)  V (s) +  V(  s ) − V (s) 

a small positive fraction,  e.g.,   = .1

the step - size parameter

•

Our Move {
Opponent's Move {

Our Move {

Starting Position

•

•

•

a

b

c

d

ee'

Opponent's Move {

•
f

•g

Opponent's Move {
Our Move {

•

c *

*

*g



How can we improve this TTT player?

• Take advantage of symmetries

• representation/generalization

• How might this backfire?

• Do we need “random” moves? Why?

• Do we always need a full 10%?

• Can we learn from “random” moves?

• Can we learn offline?

• Pre-training from self play?

• Using learned models of opponent?

• . . .



E.g., generalization

Table                         Generalizing Function Approximator

State            VState            V

s

s

s

.

.

.

s

1

2

3

N

Train

here



E.g., generalization

Table                         Generalizing Function Approximator

State            VState            V

s

s

s

.

.

.

s

1

2

3

N

Train

here



Tic-Tac-Toe is just a toy example

• Finite, small number of states

• One-step look-ahead is always possible

• State completely observable

• . . .
 RL is not limited to a finite number of states; in problems with 

infinite or very large number of states we only generate states 
encountered during search

 RL is not limited to games or opponent’s response



The Agent-Environment Interface

26

Agent and environment interact at discrete time steps :   t = 0,1, 2,

     Agent observes state at step t :     st S

     produces action at step t :   at  A(st )

     gets resulting reward :     rt +1 

     and resulting next state:   st +1

t

. . .
st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3
. . .

t +3a



The Agent Learns a Policy

• Reinforcement learning methods specify how the agent changes its 
policy as a result of experience.

• Roughly, the agent’s goal is to get as much reward as it can over the 
long run.

27

Policy at step t, t :

               a mapping from states to action probabilities

               t (s, a) =  probability that at = a when st = s



Getting the degree of abstraction right

• Time steps need not refer to fixed intervals of real time.

• Actions can be low level (e.g., voltages to motors), or high 
level (e.g., accept a job offer), “mental” (e.g., shift in focus 
of attention), 

• States can be low-level “sensations”, or they can be 
abstract, symbolic, based on memory, or subjective (e.g., 
the state of being “surprised” or “lost”).

• An RL agent is not like a whole animal or robot.

• Reward computation is in the agent’s environment because 
the agent cannot change it arbitrarily. 

• The environment is not necessarily unknown to the agent, 
only incompletely controllable.

28



Goals and Rewards

• Is a scalar reward signal an adequate notion of a 
goal?—maybe not, but it is surprisingly flexible.

•A goal should specify what we want to achieve, not 
how we want to achieve it.

•A goal must be outside the agent’s direct control—
thus outside the agent.

•The agent must be able to measure success:
• explicitly;
• frequently during its lifespan.

29



Robot in a room

• states

• actions

• rewards

• what is the solution?

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP

10% move LEFT

10% move RIGHT

reward +1 at [4,3], -1 at [4,2]

reward -0.04 for each step



Is this a solution?

• only if actions deterministic
• not in this case (actions are stochastic)

• solution/policy
• mapping from each state to an action

+1

-1



Optimal policy

+1

-1



Reward for each step -2

+1

-1



Reward for each step: -0.1

+1

-1



Reward for each step: -0.04

+1

-1



Reward for each step: -0.01

+1

-1



Reward for each step: +0.01

+1

-1



Returns

38

Suppose the sequence of rewards after step t is :

                         rt +1, rt+ 2 , rt + 3,

What do we want to maximize?

In general,  

we want to maximize the expected return,  E Rt ,  for each step t.

Episodic tasks: interaction breaks naturally into 

episodes, e.g., plays of a game, trips through a maze. 

Rt = rt +1 + rt +2 + + rT ,

where T is a final time step at which a terminal state is reached, 

ending an episode.



Returns for Continuing Tasks

39

Continuing tasks: interaction does not have natural episodes.  

Discounted return:

            Rt = rt +1 + rt+ 2 +  2rt +3 + =  krt + k+1,
k =0





where  , 0    1, is the discount rate.

shortsighted  0   → 1  farsighted



An example: cart and pole

40

Avoid failure: the pole falling beyond

a critical angle or the cart hitting end of

track.

reward  = +1 for each step before failure

   return =  number of steps before failure

As an episodic task where episode ends upon failure:

As  a continuing task with discounted return:

reward  = −1 upon failure; 0 otherwise

   return =  − k ,  for k steps before failure

In either case, return is maximized by 

avoiding failure for as long as possible.



Another Example

41

Get to the top of the hill

as quickly as possible. 

reward  = −1 for each step where not at top of hill

   return =  − number of steps before reaching top of hill

Return is maximized by minimizing 

number of steps to reach the top of the hill. 



A Unified Notation

• In episodic tasks, we number the time steps of each episode starting from 
zero.

• We usually do not have to distinguish between episodes, so we write st
instead of st,j for the state at step t of episode j.

• Think of each episode as ending in an absorbing state that always produces 
reward of zero:

• We can cover all cases by writing

42

reached. always is state absorbing reward zeroa  ifonly  1 be can   where

,                                                                
0

1






=

++=
k

kt

k

t rR



Episodic task – finite horizon

• In time t, the agent is interested in h further states 

• Rewards in that time are rt+1, rt+2, rt+3, ..., rt+h

Rt =rt+1 +  rt+2 +  rt+3 + ... + rt+h

• The agent maximizes expected reward in that period 

)(max)(max
1


=

+=
h

k

ktt rERE



Finite horizon 

• Two optimal behaviors
• h-step optimal action: on step 1, do an action which is optimal under 

assumption that h-1 actions will follow, on step 2 do an action which 
is optimal under assumption that h-2 actions will follow ...

• h-step receding action: on each step do an action which is optimal 
under assumption that h actions will follow

• Limited look-ahead

• Suitability of finite horizon: episodic missions (e.g., labyrinth)



Continuous tasks

• No natural end, but …

… nearer actions are more important than more distant 
ones

• Agent optimizes infinite sequence of rewards

• Rewards are geometrically discounted

• rewards: Rt = rt+1 + rt+2 + 2rt+3 + 3rt+4, ... for 0 <  < 1

•  (discount factor) can be interpreted as interest rate, a 
trick to bound an infinite sum, probability of surviving 
another step, short/far-sightedness 

10   ),(max
0

1 


=

++ 
k

kt

krE



Average reward model

• Agent optimizes long-term average reward

• Downside: does not know the difference between near and 
distant rewards

)
1

(lim
1


=

+
→

h

k

kt
h

r
h

E



An example: rewards

1. finite horizont, h=4
2. infinite horizont, γ=0.9
3. average expected reward



The Markov Property

•By “the state” at step t, we mean whatever information 
is available to the agent at step t about its environment.

•The state can include immediate “sensations,” highly 
processed sensations, and structures built up over time 
from sequences of sensations. 

• Ideally, a state should summarize past sensations so as 
to retain all “essential” information, i.e. it should have 
the Markov Property:

48

Pr st +1 =  s ,rt +1 = r st ,at ,rt , st −1,at −1, ,r1,s0 ,a0 =

                                                             Pr st +1 =  s ,rt +1 = r st ,at 
for all  s , r, and histories st ,at ,rt , st −1,at −1, ,r1, s0 ,a0. 



Markov Decision Processes

• If a reinforcement learning task has the Markov Property, it is 
basically a Markov Decision Process (MDP).

• If state and action sets are finite, it is a finite MDP. 

• To define a finite MDP, you need to give:
• state and action sets

• one-step “dynamics” defined by transition probabilities:

• reward probabilities:

49

 

Ps  s 

a = Pr st +1 =  s st = s,at = a    for all s,  s  S, a  A(s).

 

Rs  s 

a = E rt +1 st = s,at = a,st +1 =  s     for all s,  s  S, a  A(s).



An Example of Finite MDP

•At each step, robot has to decide whether it should 
(1) actively search for a can, (2) wait for someone to 
bring it a can, or (3) go to home base and recharge. 

•Searching is better but runs down the battery; if runs 
out of power while searching, has to be rescued 
(which is bad).

•Decisions made on basis of current energy level: 
high, low.

•Reward = number of cans collected

50

Recycling Robot



Recycling Robot MDP

51

  

S = high,low 

A(high) = search, wait 

A(low) = search,wait, recharge   

 

R
search =  expected no. of cans while searching

R
wait =  expected no. of cans while waiting

                     Rsearch  R
wait



Value Functions

•The value of a state is the expected return starting 
from that state; depends on the agent’s policy:

•The value of taking an action in a state under policy 
 is the expected return starting from that state, 
taking that action, and thereafter following  :

52

State - value function for policy  :

V

(s) = E Rt st = s = E 

k
rt +k +1 st = s

k =0




 
 
 

 
 
 

Action - value function for policy  :

Q

(s, a) = E Rt st = s, at = a = E 

k
rt + k +1 st = s,at = a

k= 0




 
 
 

 
 
 



Bellman Equation for policy 

53

Rt = rt +1 +  rt +2 + 2rt + 3 + 3rt + 4

= rt +1 +  rt +2 +  rt +3 + 
2
rt + 4( )

= rt +1 +  Rt +1

The basic idea:

So: V


(s) = E Rt st = s 

= E rt +1 +  V st +1( ) st = s 

Or, without the expectation operator: 

 

V  (s) =  (s,a) Ps  s 

a
Rs  s 

a + V  (  s ) 
 s 


a



π



More on the Bellman Equation

54

 

V  (s) =  (s,a) Ps  s 

a
Rs  s 

a + V  (  s ) 
 s 


a



This is a set of equations (in fact, linear), one for each state.

The value function for  is its unique solution.

Backup diagrams:

for V


for Q




Gridworld

• Actions: north, south, east, west; deterministic.

• If it would take agent off the grid: no move but reward = –1

• Other actions produce reward = 0, except actions that move agent 
out of special states A and B, as shown.

55



Gridworld

• Actions: north, south, east, west; deterministic.

• If would take agent off the grid: no move but reward = –1

• Other actions produce reward = 0, except actions that move agent 
out of special states A and B as shown.

56

State-value function 

for equiprobable 

random policy;

 = 0.9



Optimal Value Functions
• For finite MDPs, policies can be partially ordered: 

• There are always one or more policies that are better than or 
equal to all the others. These are the optimal policies. We 
denote them all  *.

• Optimal policies share the same optimal state-value function:

• Optimal policies also share the same optimal action-value 
function:

57

        if and only if  V

(s)  V

  
(s)  for all s S

V

(s) = max


V


(s)   for all  s S

Q

(s,a) = max


Q


(s, a)  for all  s S and a A(s)

This is the expected return for taking action a in state s

and thereafter following an optimal policy.



Bellman Optimality Equation for V*

58

 

V (s) = max
a A (s)

Q 

(s,a)

= max
a A (s)

E rt +1 + V (st +1) st = s,at = a 

= max
a A (s)

Ps  s 

a

 s 

 Rs  s 

a + V (  s ) 

The value of a state under an optimal policy must equal

the expected return for the best action from that state:

The relevant backup diagram: 

is the unique solution of this system of nonlinear equations.V




Bellman Optimality Equation for Q*

59

 

Q(s,a) = E rt +1 +  max
 a 

Q(st +1,  a ) st = s,at = a 

= Ps  s 

a
Rs  s 

a +  max
 a 

Q(  s ,  a ) 
 s 



The relevant backup diagram: 

is the unique solution of this system of nonlinear equations.Q
*



Therefore, given     , one-step-ahead search produces the 

long-term optimal actions.

Why Optimal State-Value Functions are Useful

60

V


V


Any policy that is greedy with respect to is an optimal policy.

E.g., back to the gridworld:

*



What About Optimal Action-Value Functions?

61

Given      , the agent does not even

have to do a one-step-ahead search:  

Q
*



(s) = arg max

aA (s)
Q


(s,a)



Solving the Bellman Optimality Equation

• Finding an optimal policy by solving the Bellman optimality 
equation requires the following:
• accurate knowledge of environment dynamics;

• enough space and time to do the computation;

• the Markov property.

• How much space and time do we need?
• polynomial in number of states (via dynamic programming 

methods),

• BUT, number of states is often huge (e.g., backgammon has about 
1020 states).

• We usually have to settle for approximations.

• Many RL methods can be understood as approximately 
solving the Bellman optimality equation.

62



Dynamic programming

•main idea
• use value functions to structure the search for good 

policies
• need a perfect model of the environment

• two main components
• policy evaluation: compute V from 
• policy improvement: improve  based on V

• start with an arbitrary policy
• repeat evaluation/improvement until convergence



Policy evaluation/improvement
• policy evaluation:  -> V

• Bellman eqn’s define a system of n eqn’s

• could solve, but will use iterative version

𝑉𝑘+1(𝑠) = σ𝑎 𝜋(𝑠, 𝑎)σ𝑠′𝑃𝑠𝑠′
𝑎 [𝑟𝑠𝑠′

𝑎 + 𝛾𝑉𝑘 𝑠′ ]

• start with an arbitrary value function V0, iterate until Vk converges

• policy improvement: V -> ’ 

• ’ either strictly better than , or ’ is optimal (if  = ’)



Policy/Value iteration

• Policy iteration

• two nested iterations; too slow

• don’t need to converge to Vk

• just move towards it

• Value iteration

• use Bellman optimality equation as an update

• converges to V*



Using dynamic programming

• need complete model of the environment and rewards
• robot in a room

• state space, action space, transition model

• can we use DP to solve
• robot in a room?

• backgammon?

• helicopter?

• DP bootstraps
• updates estimates on the basis of other estimates



Monte Carlo methods

• don’t need full knowledge of environment
• just experience, or

• simulated experience

• averaging sample returns
• defined only for episodic tasks

• but similar to DP
• policy evaluation, policy improvement



Monte Carlo policy evaluation

• want to estimate V(s)
= expected return starting from s and following 

• estimate as average of observed returns in state s

• first-visit MC
• average returns following the first visit to state s

s s
s0

+1 -2 0 +1 -3 +5
R1(s) = +2

s0

s0

s0

s0

s0

R2(s) = +1

R3(s) = -5

R4(s) = +4

V(s) ≈ (2 + 1 – 5 + 4)/4 = 0.5



Monte Carlo control

• V not enough for policy improvement
• need exact model of environment

• estimate Q(s,a)

• MC control

• update after each episode

• non-stationary environment

• a problem
• greedy policy won’t explore all actions



Maintaining exploration

• key ingredient of RL

• deterministic/greedy policy won’t explore all actions
• don’t know anything about the environment at the beginning

• need to try all actions to find the optimal one

• maintain exploration
• use soft policies instead: (s,a)>0 (for all s,a)

• ε-greedy policy
• with probability 1-ε perform the optimal/greedy action

• with probability ε perform a random action

• will keep exploring the environment

• slowly move it towards greedy policy: ε -> 0



Simulated experience

• 5-card draw poker
• s0: A, A, 6, A, 2

• a0: discard 6, 2

• s1: A, A, A, A, 9 + dealer takes 4 cards

• return: +1 (probably)

• DP
• list all states, actions, compute P(s,a,s’)

• P( [A,A,6,A,2], [6,2], [A,9,4] ) = 0.00192 

• MC
• all you need are sample episodes

• let MC play against a random policy, or itself, or another algorithm



Summary of Monte Carlo
• don’t need model of environment

• averaging of sample returns
• only for episodic tasks

• learn from:
• sample episodes
• simulated experience

• can concentrate on “important” states
• don’t need a full sweep 

• no bootstrapping 
• less harmed by violation of Markov property

• need to maintain exploration
• use soft policies



Value Iteration

void valueIteration() {
initialize V(s) arbitrarily
do{ 

foreach ( s ∈ S ) {
foreach ( a ∈ A ) {

Q(s,a) = R(s,a)+γ Σs′∈S T(s,a,s′)V(s′) 
V(s) = maxaQ(s,a) 

}
}

} while ( ! policy good enough ) ;
}

Algorithm updates values backwards (from final states)



Value iteration: convergence

• Theorem: If the maximum difference between two 
successive value functions is less than ε, then the value of 
the greedy policy, (the policy obtained by choosing, in every 
state, the action that maximizes the estimated discounted 
reward, using the current estimate of the value function) 
differs from the value function of the optimal policy by no 
more than 2ε γ/(1−γ ) at any state.

• An effective stopping criterion for the algorithm

• Value iteration is very flexible. The assignments to V need 
not be done in strict order but instead can occur 
asynchronously in parallel, provided that the value of every 
state gets updated infinitely often on an infinite run.



Policy iteration

The value function of a policy is just the expected infinite discounted reward that 
will be gained, at each state, by executing that policy. It can be determined by 
solving a set of linear equations. Once we know the value of each state under the 
current policy, we consider whether the value could be improved by changing the 
first action taken. If it can, we change the policy to take the new action whenever 
it is in that situation. This step is guaranteed to strictly improve the performance 
of the policy. When no improvements are possible, then the policy is guaranteed 
to be optimal.



Approximate solutions

• Learning with time differences (TD), 
a model is not needed, incremental, difficult for analysis

• Dynamic programming,
mathematically well defined problems with exact and 
complete description of the environment

• Monte Carlo methods,
model is not necessary, conceptually simple, not 
incremental, sampling complete trajectories in interaction 
with environment (or model of environment)

• Efficiency, convergence



TD() learning 

• Learning with time differences

• Previous states receive a portion of the difference to 
successors

• For =0
V(st) = V(st) + c( V(st+1)- V(st) )

• c is a parameter, slowly decreasing during learning assuring 
convergence

• For  > 0, more than just immediate successors are taken 
into account (speed)



Temporal Difference Learning

• combines ideas from MC and DP
• like MC: learn directly from experience (don’t need a model)

• like DP: bootstrap

• works for continuous tasks, usually faster then MC

• constant-alpha MC:
• have to wait until the end of episode to update

• simplest TD
• update after every step, based on the successor

target



MC vs. TD

• observed the following 8 episodes:
A – 0, B – 0 B – 1 B – 1 B - 1

B – 1 B – 1 B – 1 B – 0

• MC and TD agree on V(B) = 3/4

• MC: V(A) = 0
• converges to values that minimize the error on training data

• TD: V(A) = 3/4
• converges to ML estimate

of the Markov process
A B

r = 0

100%

r = 1

75%

r = 0

25%



Q-learning

• previous algorithms: on-policy algorithms
• start with a random policy, iteratively improve

• converge to optimal

• Q-learning: off-policy
• use any policy to estimate Q

• Q directly approximates Q* (Bellman optimality eqn)

• independent of the policy being followed

• only requirement: keep updating each (s,a) pair

• Sarsa



Q learning

• Watkins, 1989

• The most popular variant of time difference learning

• One step ahead

Q(st,at) = (1-c) Q(st,at) + c(rt+1+  maxa Q(st+1,a) - Q(st,at))

0 <= c,  <= 1



Q-Learning:  Definitions

• Current state:   s

• Current action:   a

• Transition function:   δ(s, a) = sʹ

• Reward function:   r(s, a) Є R

• Policy π(s) = a

• Q(s, a) ≈ value of taking action a from state s

Markov property: 
this is independent 
of previous states 

given current state

In classification we’d 
have examples
(s, π(s)) to learn 

from



The Q-function

•Q(s, a) estimates the discounted cumulative reward
• Starting in state s
• Taking action a
• Following the current policy thereafter

•Suppose we have the optimal Q-function
• What’s the optimal policy in state s?
• The action argmaxb Q(s, b)

•But we don’t have the optimal Q-function at first
• Let’s act as if we do
• And updates it after each step so it’s closer to optimal
• Eventually it will be optimal!



Q-Learning:  The Procedure

Environment

s1

Agent
Q(s1, a) = 0
π(s1) = a1

a1

s2

r2

δ(s1, a1) = s2

r(s1, a1) = r2

Q(s1, a1)  Q(s1, a1) + Δ
π(s2) = a2

a2

δ(s2, a2) = s3

r(s2, a2) = r3

s3

r3



Q-Learning:  Updates

),'(max),(),( bsQasrasQ b+⎯⎯

 With a discount factor to give later rewards less impact

   ),'(max),(),(1),( bsQasrasQasQ b ++−⎯⎯

 With a learning rate for non-deterministic worlds

),'(max),(),( bsQasrasQ b+⎯⎯

 The basic update equation



Q-Learning:  Update Example
1 2 3

4 5 6

7 8 9

10 11
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Q-Learning:  Update Example
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Q-Learning:  Update Example
1 2 3

4 5 6

7 8 9
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1
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The Need for Exploration
1 2 3

4 5 6

7 8 9

1
0

1
1

23

4

5 6

=),(maxarg 2 asQ

=→best

Explore!



Q learning



Explore/Exploit Tradeoff

•Can’t always choose the action with highest Q-value
• The Q-function is initially unreliable
• Need to explore until it is optimal

•Most common method:  ε-greedy
• Take a random action in a small fraction of steps (ε)
• Decay ε over time

•There is some work on optimizing exploration 
• Kearns & Singh, ML 1998
• But people usually use this simple method



Q-Learning:  Convergence

• Under certain conditions, Q-learning will converge to the 
correct Q-function
• The environment model doesn’t change
• States and actions are finite
• Rewards are bounded
• Learning rate decays with visits to state-action pairs
• Exploration method would guarantee infinite visits to every 

state-action pair over an infinite training period



Deep Q learning



Extensions:  SARSA

 SARSA:  Take exploration into account in updates
 Use the action actually chosen in updates

PIT!
=→

→

Regular:

SARSA:

)','(),(),( asQasrasQ +⎯⎯

),'(max),(),( bsQasrasQ b+⎯⎯



Sarsa

• again, need Q(s,a), not just V(s)

• control
• start with a random policy

• update Q and  after each step 

• again, need -soft policies

st st+1
at st+2

at+1 at+2

rt rt+1



Extensions:  Look-ahead

• TD(λ):  a weighted combination of look-ahead distances
• The parameter λ controls the weighting

)'',''()','(),(),( 2 asQasrasrasQ  ++⎯⎯

 Look-ahead:  do updates over multiple states
 Use some episodic memory to speed credit assignment

1 2 3

4 5 6

7 8 9

10 11



Extensions:  Eligibility Traces

• Eligibility traces:  Lookahead with less memory
• Visiting a state leaves a trace that decays

• Update multiple states at once

• States get credit according to their trace

1 2 3

4 5 6

7 8 9

10 11



Extensions:  Options and Hierarchies

• Options:  Create higher-level actions

 Hierarchical RL:  Design a tree of RL tasks

Room A Room B

Whole Maze



Extensions:  Function Approximation

•Function approximation:  allow complex environments
• The Q-function table could be too big (or infinitely big!)

• Describe a state by a feature vector
f = (f1 , f2 , … , fn)
• Then the Q-function can be any regression model

• E.g. linear regression:  
Q(s, a) = w1 f1 + w2 f2 + … + wn fn

• Cost:  convergence goes away in theory, though often not in practice

• Benefit:  generalization over similar states

• Easiest if the approximator can be updated incrementally, like neural 
networks with gradient descent, but you can also do this in batches



Measuring learning performance

• Eventual convergence to optimality
Many algorithms come with a provable guarantee of asymptotic 
convergence to optimal behavior. This is reassuring, but useless 
in practical terms. 

• Speed of convergence to optimality
Optimality is usually an asymptotic result, and so convergence 
speed is an ill-defined measure. More practical are
• speed of convergence to near-optimality (how near?)

• level of performance after a given time (what time?)

• Regret
expected decrease in reward gained due to executing the 
learning algorithm instead of behaving optimally from the very 
beginning; these results are hard to obtain.



Challenges in Reinforcement Learning

•Feature/reward design can be very involved
• Online learning (no time for tuning)
• Continuous features (handled by tiling)
• Delayed rewards (handled by shaping)

•Parameters can have large effects on learning speed
• Tuning has just one effect: slowing it down

•Realistic environments can have partial observability

•Realistic environments can be non-stationary

•There may be multiple agents



Do Brains Perform RL?

• Should machine learning researchers care?
• Planes don’t fly the way birds do; should machines learn the way people 

do?

• But why not look for inspiration?

• Psychological research does show neuron activity associated 
with rewards
• Really prediction error:  actual – expected

• Primarily in the striatum



What People Do Better

•Parallelism
• Separate systems for positive/negative errors
• Multiple algorithms running simultaneously

•Use of RL in combination with other systems
• Planning:  Reasoning about why things do or don’t work
• Advice:  Someone to imitate or correct us
• Transfer:  Knowledge about similar tasks

•More impulsivity
• Is this necessarily better?

•The goal for machine learning:  Take inspiration 
from humans without being limited by their 
shortcomings



Some examples and details



An example: directing robot in 2d plane

• G.A.Rummery: Problem Solving with Reinforcement Learning, 1995



Robot in 2d: the settings

• sensors: 
• five distance measures to nearest obstacle in 15 degree 

forward arc
• always knows distance and angle to the goal

•payoff after the end of the trial (reaching goal, 
collision with an obstacle or time out)

• start, goal and obstacles are randomly changed 
after every trial

• robot has to learn a generalized reactive policy; 
how?



Robot in 2d: actions and rewards

• 6 actions: 
• (turn left 15º, turn right 15º, stay in the same direction) x (move 

forward for a fixed distance d, do not move)

• rewards: 
• 0 in every step except the final

• goal: if in a small fixed radius around the goal, +1

• crash: based on a distance d from the goal e.g. 0.5 exp(−
2𝑑𝑔𝑜𝑎𝑙

𝑑𝑚𝑎𝑥
), 

(note: maximum is 0.5)

• time-out: as for crash + some small reward for not crashing, e.g., +0.3

• set   = 0.99 to reward faster findings of the goal

• set probability of exploration/exploitation



Using NN for 2-d robot

• coarse coding the inputs (e.g., with several input 
sigmoids for each sensor)

•backpropagation with momentum term or eligibility 
traces

•batch and on-line training



Some trajectories of trained robots



State representation

• pole-balancing
• move car left/right to keep the pole balanced

• state representation
• position and velocity of car

• angle and angular velocity of pole

• what about Markov property? 
• would need more info

• noise in sensors, temperature, bending of pole

• solution
• coarse discretization of 4 state variables

• left, center, right

• totally non-Markov, but still works



Designing rewards

• robot in a maze
• episodic task, not discounted, +1 when out, 0 for each step

• chess
• GOOD: +1 for winning, -1 losing
• BAD: +0.25 for taking opponent’s pieces

• high reward even when lose

• rewards
• rewards indicate what we want to accomplish
• NOT how we want to accomplish it

• shaping
• positive reward often very “far away”
• rewards for achieving subgoals (domain knowledge)
• also: adjust initial policy or initial value function



Tutorial: Deep Reinforcement Learning
David Silver, Google DeepMind





Summary

• Reinforcement learning
• use when need to make decisions in uncertain environment
• actions have delayed effect

• solution methods
• dynamic programming

• need complete model

• Monte Carlo
• time difference learning (Sarsa, Q-learning)

• simple algorithms

• most work
• designing features, state representation, rewards


