University of Ljubljana, Faculty of Computer and Information Science AUTOML

MACHINE
LEARNING oy

INPUT — ,

i E © i

PROCESSING ENSEMBLES

Intelligent Sytems

Prof Dr Marko Robnik-Sikonja

L

TITTT
EXPLANTATION

NATURAL
LANGUAGE

PROCESSING @x® @ dgg

o e}
—>ém NEUROEVOL {é}' gﬁ_o

AGENT ¢

EVALUATION
L

Edition 2025 - —

PREDICTION  gyp| ANATION



Lecturer

Prof Dr Marko Robnik-Sikonja

University of Ljubljana
Faculty of Computer and Information Science
Head of Machine Learning and Language Technlogies Lab

FRI, Vecna pot 113, 2" floor, room 2.06, to the right from the elevator

marko.robnik@fri.uni-lj.si

https://fri.uni-lj.si/en/employees/marko-robnik-sikonja

(01) 4798 241

Contact hours (see the webpage)
e currently, Wednesdays, 11:00 - 12:00; please, email me; other times or Zoom meeting are possible

Research interests: artificial intelligence, machine learning, natural language processing, network analytics, data
science

Teaching: courses from areas of machine learning, natural language processing, and problem solving

Software and resources: supporting open science, author of several open source ML packages, many large
language models, and language resources



Assistants

* Dr Tadej Skvorc
* Timotej Knez, PhD student
e Boshko Koloski, PhD student

* tutorials, assignments, work in Python
* please, prepare questions!
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Syllabus

* nature inspired computing (genetic algorithms, genetic programming)
 basics of machine learning,

* bias, variance, generalization error, and overfitting
* representation learning and feature selection

* neural networks

* natural language processing

* ensemble methods

* kernel methods

e automated machine learning

* transformers for tabular data and time series

* model inference and explanation

* reinforcement learning



Objectives

1. students shall become acquainted with
* nature inspired computing

* machine learning
* predictive modeling approaches
* model selection and evaluation techniques
* model comprehensibility and explanation
* practical application of predictive modeling in python

* natural language processing
* reinforcement learning

Z.Practic_al use of theoretical knowledge on (almost) real-world problems ;
or a given prediction problem students shall be able to

* transform it to a form suitable for predictive modeling
* select and train an appropriate predictive model
* evaluate the model and present the results in a comprehensible form and language

3. awareness of domain expertise and ethical issues in data science

4. increase the (mental) problem-solving toolbox with
* predictive modeling techniques
* evolutionary optimization approaches
* large language models
* reinforcement learning
e experiment design, result understanding, visualization, and explanation approaches



Be able to explain

difference between different types of machine
learning models

properties of models: bias, variance,
generalization, hypothesis language

properties of the following models: kNN,
decision rules, bagging, boosting, random
forests, stacking, SVM, neural networks

properties and purpose of evaluation
approaches and metrics: cross-validation,
bootstrapping, ROC curves, sensitivity, specificity
etc.

When and how to apply AutoML techniques

inference methods for predictive methods and
explanation of predictions

when and why to apply reinfocement learning
how to prepare and process text

when and how and to optimize a problem using
evolutionary algorithms

Concrete course goals

Build and evaluate models in Python

visualize datasets and created models

prepare data into a suitable form for
modeling algorithms

apply classification and regression models
to solve a prediction task with a given data
set

build natural language classifier

estimate error of models using statistically
valid approaches

select models and tune their parameters
using cross-validation and bootstrapping

apply AutoML techniques

visualize models and explain their
predictions

given a new dataset, select an appropriate
modeling technique and evaluate the
created model



Syllabus explained



Nature inspired computing

e genetic algorithms
* genetic programming

* neuro-evolution



Introduction to statistical predictive modelling

* Learning as modelling: data, evidence, background knowledge,
predictive models, hypotheses, learning as optimization, learning as
search, criteria of success, inductive learning, generalization.

* Classification and regression: supervised and unsupervised learning,
learning discrete and numeric functions, learning relations, learning
associations.

e Simple classification models: nearest neighbor, decision rules



Model selection

* Bias and variance: error decomposition, trade-off, estimating bias and
variance

* Generalization performance: training and testing set error, cross-
validation, evaluation set, bootstrapping.

* Performance measures: confusion matrix, sensitivity and specificity,
ROC curves, AUC, cost-based classification.

* Parameter tuning: regularization, search
* AutoML



Kernel methods

* SVM for classification and regression: kernels, support vectors,
hyperplanes.

 SVM for more than two classes: one vs. one, one vs. all.



Ensemble methods

* Model averaging, why ensembles work.
* Tree based ensembles: bagging, boosting, random forests.

* MARS and AODE ensembles.
 Stacking, mixture of experts.



Neural networks

e perceptron,

* backpropagation,

e setting structure of networks

* deep neural networks

* transformer architecture

* autoencoders

* GANs

* neural embedings and representation learning



Explaining prediction models

* Model comprehensibility, visualization and knowledge discovery.
* General methodology for explaining predictive models.

* Model level and instance level explanations, methods SHAP, LIME,
EXPLAIN, and IME.



Learning with special settings

* imbalanced data,

* multi-task learning,
* multi-label learning,
* Etc.



Natural language processing

* text preprocesing

* text representation
e text similarity

* text classification

e sentiment analysis

* generative models



Reinforcement learning

* basics

* Markov decision problem
* Q learning

* Deep RL



Course organisation



Obligations

* 5 quizzes
* Two projects, 50 points
* Written exam, 50 points



Grading

Obligation __ %oftotal | subjectto
Five quizzes 0% > 50% alltogether

Projects 50% > 50% each
Written exam 50% > 50%

21



Learning materials

* Learning materials in Moodle
e Slides

e Quizzes

e Links and other materials

22



Readings (all freely available)

James, G., Witten, D., Hastie, T., Tibshirani, R. and Taylor, J., 2023. An Introduction to Statistical
Learning: With Applications in Python. New York: Springer. (also exists for R)

Chollet, F. and Watson, M., 2025. Deep Learning with Python, 3™ edition. Manning.

Further readings:

Jurafsky, Daniel and James, Martin (2025): Speech and Language Processing, 3rd edition in progress

Richard S. Sutton and Andrew G. Barto: Reinforcement Learning, An Introduction, 2nd edition, MIT
Press, 2018

Kevin P. Murphy: Probabilistic Machine Learning: An Introduction. MIT Press, 2022

Kevin P. Murphy: Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023

Friedman, J., Hastie, T., & Tibshirani, R., 2009). The elements of statistical learning, 2" edition. Springer,
Berlin

scientific papers

many excellent machine learning and data science courses on Coursera, edX etc.

23



Retention of learning

Learning by Doing ,,.-:’3'.: p

>75%

Play
Exercises,
Discussion,
Demonstration

Participating

20% - 75%

Receiving

Retention of Learning

<20%

24



Data Science is a part of Intelligent Systems

e good job perspective
* many jobs in this area regularly occupy list of the most promising jobs

* Thomas H. Davenport, D.J. Patil: Data Scientist: The Sexiest Job of the 21st
Century. Harvard Business Review, October 2012
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MODERN DATA SCIENTIST

Data Scientist, the sexiest job of the 21th century, requires a mixture of multidisciplinary skills ranging from an
intersection of mathematics, statistics, computer science, communication and business. Finding a data scientist is
hard. Finding people who understand who a data scientist is, is equally hard. So here is a little cheat sheet on who

MATH
& STATISTICS

vr Machine leaming
Statistical modeling
Experiment design
Bayesian inference

Supervised learning: decision trees
random forests, logistic regression

Unsupervised leaming: clustering,
dimensionality reduction

Optimization: gradient descent and
variants

DOMAIN KNOWLEDGE
& SOFT SKILLS

v Passionate about the business
Curious about data

Influence without authority
Hacker mindset
Problem solver

Strategic, proactive, creative
innovative and collaborative

the modern data scientist really is.

PROGRAMMING
& DATABASE

W

Computer science fundamentals
Scripting language e g. Python
Statistical computing packages.eg_R
Databases- SOL and NoSOL
Relational algebra

Parallel databases and parallel query
processing

MapReduce concepts

Hadoop and Hive/Pig

Custom reducers

Experience with xaaS like AWS

COMMUNICATION
& VISUALIZATION

%

Able to engage with senior
management

Story telling skills

Translate data-driven insights into
decisions and actions

Visual art design
R packages like ggplot or lattice

Knowledge of any of visualization
tools e.g Fare, D3 s, Tableau

26



What my CUSTOMERS think I do

What my HUSBAND thinks I do

Compue {5 doing, ometiiig,

DATA SCIENTIST

What my MUM thinks I do

What my FRIENDS think I do

oot it
Q i

What I ACTUALLY do

27



Intelligent systems and media

Will robots destroy us?

Will they take our jobs?

Will we still need a driving licence?
Will we still need doctors?

How will humanoid robots evolve?
What about cyborgs?

What is artificial general intelligence?
What is technological singularity?




New prophets of tehnological singularity

Elon Musk says humans must become

Cyborgs to stay relevant. Is he Iight7 Ray Kurzweil - Human-Level Al is Just 12 Years Away

42K views * 229 comments

Sophisticated artificial intelligence will make ‘house cats’ of humans, claims the
entrepreneur, but his grand vision for mind-controlled tech may be a long way off




Some scientific opinions

* Rodney Brooks: The Seven Deadly Sins of Predicting the Future of Al.
https://rodneybrooks.com/the-seven-deadly-sins-of-predicting-the-future-
of-ai/ also in MIT Technology Review

« Marko Robnik-Sikonja: Is artificial intelligence a (job) killer?. The
Conversation, Jul. 2017 https://theconversation.com/is-artificial-
intelligence-a-job-killer-80473

30




Short history of optimismyy
e starting in 1950s, %
1956 Dartmouth conference
* great expectations, enormous underestimation
of problem difficculty
* Al winter (2 x)

1958, H. A. Simon and Allen Newell: “... within ten years a digital computer will discover
and prove an important new mathematical theorem.”

1965, H. A. Simon: “... machines will be capable, within twenty years, of doing any work a
man can do.”

1967, Marvin Minsky: "Within a generation ... the problem of creating 'artificial
intelligence' will substantially be solved.”

1970, Marvin Minsky: "In from three to eight years we will have a machine with the
general intelligence of an average human being."

31



EXPECTATIONS

Hype Cycle for Artificial intelligence, 2025

Sovereign Al
Multimodal Al
AITRISM

Composite Al
Artificial General Intelligence

Neurosymbolic Al
FinOps for Al

Decision Intelligence

World Models
Al Simulation

Embodied Al
Causal Al

Al Governance Platforms

First-Principles Al

Quantum Al
AlNative Software

Al Agents AlReady Data

Al Engineering
Responsible Al

ModelOps

Foundation Models
Synthetic Data

Edge Al
Generative Al

Model Distillation

Knowledge Graphs
Cloud Al Services

As of June 2025

Engineering
Innovation Peak of Inflated Trough of Slope of
Trigger Expectations Disillusionment Enlightenment
TIME
Plateau willbereached: () <2yrs. O 2-5yrs. @ 5-10yrs. A >10yrs. & Obsolete before plateau

Plateau of
Productivity

Gartner
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Hype Cycle for Artificial Intelligence, 2024

EXPECTATIONS

Al Engineerng

Responsible Al

Prompt Engineering
Al TRISM

Sovereign Al

Anificial General Inelligence
Composite Al |

Neuro-Symbalic Al
Decision Intelligence
AlReady Data

Causal Al
Al Simulation

Muliiagent Systems
Embodied Al
First-Principles Al

Quantum Al
Auntonomic Systems

* Foundation Models

Edge Al

Synthetic Data

ModelOps
Generative Al

Meuramaorphic Computing
Smart Robots

Cloud Al Services

Intelligent Applications
Knowledge Graphs

Autcnomous Vehicles

As of June 2024

Peak of Inflated
Expectations

Innovation
Trigger

Plateau will be reached: (0 <2 yrs.

) 2-5yrs. @ 5-10yrs.

Trough of
Disillusionment

TIME

Slope of
Enlightenment

A >10yrs.  ® Obsolete before plateau

Plateau of
Productivity

Gartner



EXPECTATIONS

Hype Cycle for Emerging Technologies, 2024

Internal Developer Portals

Machine Customers
GitOps Alfugmented Software Engineering
. . ] Superapps
Prompt Engineering _
Hemomorphic Encryption \ Cloud-Native
Al TRISM WebAssembly
Federated Machine Learning ,
. ; Generative Al
Reinforcement Learning

Artificial General Intelligence
Digital Immune System

Autonomous Agents

Al Supercomputing
B
Multiagent Systems
Disinformation Security
Cybersecurity

Mesh Architecture
Digital Twin

of a Customer
Spatial Computing
Humanoid
Working Robots

Large Action Models

As of August 2024

Innovation Peak of Inflated Trough of Slope of
Trigger Expectations Disillusionment Enlightenment
TIME

Plateau willbereached: © <2yrs. O 2-5yrs. @ 5-10yrs. A >10yrs.  ® Obsolete before plateau

Plateau of
Productivity

Gartner
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Contents

#* Introduction to evolutionary computation
# Genetic algorithms

# Genetic algorithms and automatic code
generation



Evolutionary and natural computation

# Many engineering and computational ideas from nature work
fantastically!

Evolution as an algorithm

Abstraction of the idea:

*

X progress, adaptation - learning, optimization

Survival of the fittest - competition of agents, programs, solutions
Populations — parallelization

(Over)specialization — local extremes

Neuro-evolution, evolution of robots, evolution of novelty

* = % % »

revival of interest



Template of evolutionary program

generate a population of agents (objects, data structures)

do §

compute fitness (quality) of the agents

select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

# immensely general -> many variants



A result of successful evolutionary
program

Solution Solution
Quality Quality
Search Space Search Space
a. The beginning search space b. The search space after

n generations



Main approaches to nature inspired computing

# Genetic algorithms

# Genetic programming

# Differential evolution

# Swarm methods (particles, ants, bees, ...)
# Physics methods: simulated annealing

* etc.



Genetic Algorithms - GA

# Pioneered by John Holland in the 1970’s
# Got popularin the late 1980's
# Based on ideas from Darwinian evolution

# Can be used to solve a variety of problems that
are not easy to solve using other techniques

# Revival of interest in connection with
neuroevolution



Chromosome, Genes and Genomes

Chromosome

=

Fenome
_,.,..-"

* Only a weak analogy to GA



Genome representation

#* Bit vector

# Numeric vectors

#* 5trings

# Permutations

#* Trees: functions, expressions, programs

* .



Crossover

#* Single point/multipoint

# Shall preserve individual objects



Crossover: bit representation

Parents: 1101011100 0111000101

Children: 1101010101 0111001100



Crossover: vector representation

Simplest form
Parents: (6.13, 4.89, 17.6, 8.2) (5.3, 22.9, 28.0, 3.9)
Children: (6.13, 22.9, 28.0, 3.9) (5.3, 4.89, 17.6, 8.2)

In reality: linear combination of parents



Linear crossover

# The linear crossover simply takes a linear
combination of the two individuals.

#* Letx=(x,..xy)andy =(y,...yn)
# Select a in (o, 1)
# The results of the crossoveris a x + (1- a)y .

# Possible variation: choose a different a for each
position.



Linear crossover example

# Let a = 0.75 and we have two individuals:
A=(51,2,10)and B=(2, 8, 4, 5)
# then the result of the crossoveris a A + (1- a) B

(3.75+0.5,0.75+ 2, 1.5 +1, 7.5 + 1.25) = (4.25, 2.75,2.5, 8.75)

#* |f we use the variation and we have a = (0.5, 0.25, 0.75,
0.5), the result is:

(2.5+1,0.25+6,1.5+1, 5+ 2.5) =(3.5, 6.25, 2.5, 7.5)



Crossover: trees




Permutations: travelling salesman
oroblem

# gcities:1,2..9
#* bit representation using 4 bits?

¢ 00010010 0011 0100 0101 0110 01111000 1001

\7

¢ crossover would give invalid genes

N7

# permutations and ordered crossover

\7
I\

keep (part of) sequences

¢ use the sequence from second cut, keep already existing

\7

192[4657[83 2 xxx|4657|xx ¥ 239]|4657(18
459187623 =2 xxx|1876 |xx 71 392|1876]45



A demo: Eaters

*

Plant eaters are simple organisms, moving around in a
simulated world and eating plants

# Fitness function: number of plants eaten

:

* 0 X *

An eater sees one square in front of its pointed end; it sees 4
possible things: another eater, plant, empty square or the wall

Actions: move forward, move backward, turn left, turn right
It is not allowed to move into the wall or another eater
Internal state: number between o and 15

The behavior is determined by the 64 rules encoded in its
chromosome; one rule for each of 16 states x 4 observations;
one rule is a pair (action, next state)

The chromosome therefore consists of length 64 x (4+2) bits =
384 bits

Crossover and mutation



Gray coding of binary numbers

# Keeping similarity

# Similar object shall have
similar genome

Binary Gray
0000 0000
0001 0001
0010 0011
0011 0010
0100 0110
0101 0111
0110 0101
0111 0100
1000 1100
1001 1101
1010 1111
1011 1110
1100 1010
1101 1011
1110 1001

1111

1000



Adaptive crossover

# Different evolution phases
# Crossover templates
# 0 —first parent, 1 second parent

# Possibly different dynamics of template

Gene Template
Parent 1{1.23.45.6 4.5 7.9 6.8 010101
Parent 2(4.7 2.31.6 3.26.4 7.7 100

0111
Child 1 (1.2 2.35.63.27.9 7.7 010100
Child 2 (4.7 3.4 1.6 4.5 6.4 6.8 011101




Mutation

# Adding new information

# Binary representation:
0111001100 --> 0011001100

# Single point/multipoint
# Random search?

# Lamarckian (searching for locally best mutation)



Lamarckism is the hypothesis that an organism can
pass on characteristics that it has acquired through

La mMarc kl dNISIM  yse ordisuse during its lifetime to its offspring.

An Early Proposal of Evolution: Theory of Acquired Characteristics

LAMARCK'S GIRAFFE and stretching
until neck
becomes
Keeps stretching and :::l’""‘:‘r'"s""‘l.\ o,
neck to reach stretching L LA
leaves higher
Original e up on tree
short-necked .

anceslor

{8

ey < V1 '}

AIURY

Driven by inner “need™

>W|'

\
“kﬂ ¢ >sﬂll AN

Jean Baptiste Lamarck (~ 1800) : Theory of Acquired Characteristics
* Use and disuse alter shape and form in an animal

» Changes wrought by use and disuse are heritable

* Explained how a horse-like animal evolved into a giraffe



Gaussian mutation

# When mutating one gene, selecting the new
value by choosing uniformly among all the
possible values is not the best choice
(empirically).

# The mutation selects a position in the vector of
floats and mutates it by adding a Gaussian error:
a value extracted according to a normal
distribution with the mean o and the variance
depending on the problem.



Template of evolutionary program

generate a population of agents (objects, data structures)

do §

compute fitness (quality) of the agents

select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

# immensely general -> many variants



Evolutional model - who will reproduce

#* Keep the good
# Prevent premature convergence

# Assure heterogeneity of population



Selection

# Proportional
# Rank proportional
#* Tournament
# Single tournament

# Stochastic
universal sampling

selection
point

the roulette wheel

aneel is rotate,,

Weakest individual

$ = has smallest share of
the roulette wheel



Proportional and rank based selection

example

Agent Fitness Pprop Cum,,, Rank Prank Cum,,
A 12 0.200 0.200 4 0.190 0.190
B 5 0.083 0.283 2 0.095 0.286
C 20 0.333 0.617 6 0.286 0.571
D 7 0.117 0.733 3 0.143 0.714
E 15 0.250 0.983 5 0.238 0.952
F 1 0.017 1.000 1 0.049 1.000
Sum 60 1.000 21 1.000




Roullete wheels for the proportional
and rank based selection example

Roulette Wheel - Proportional Selection Roulette Wheel - Rank-Based Selection




Tournament selection

# Several variants of tournaments
Probabilistic tournaments

1. set t=size of the tournament,
p=probability of a choice

2. randomly sample t agents from population forming a tournament
3. select the best with probability p

4.  selectsecond best with probability p(2-p)

5. selectthird best with probability p(1-p)2

6.

End when the mating pool is large enough



Replacement

* All

# According to the fitness (roulette, rank,
tournament, randomly)

# Elitism (keep a portion of the best)

# Local elitism (children replace parents if they are
better)



Single tournament selection

1. randomly split the population into small groups

2. apply crossover to two best agents from each
roup, their offspring replace two worst agents
rom the group

# advantage: in groups of size g the best g-2 progress
to next generation (we do not loose good agents,
maximal quality does not decrease)

# no matter the quality even the best agents have no
more than two offspring (we do not loose
population diversity)

# Computational load? Speed?



Population size

#* small, large?

# Considerations?



Niche specialization

# evolutionary niches are generally undesired
#* punish too similar agents
# modify fitness

f =1, /q(i)

q(i)={1 i sim(i) <=4,

sim(i)/4 ; otherwise},

where sim(i) is the number of very similar agents
to agent |



Stopping criteria

# number of generations, tracking of progress,
availability of computational resources,
leaderboard, mutability heuristics, etc.



Checkboard example

x We are given an n by n checkboard in which every field
can have a different colour from a set of four colors.

¢ Goalis to achieve a checkboard in a way that there are
no neighbours with the same color (not diagonal)




Checkboard example Cont'd

Chromosomes represent the way the checkboard is colored.

Chromosomes are not represented by bitstrings but by
bitmatrices

The bits in the bitmatrix can have one of the four values o, 1, 2 or
3, depending on the color.

Crossover involves matrix manipulation instead of point wise
operating.

Crossover can combine the parential matrices in a horizontal,
vertical, triangular or square way.

Mutation remains bitwise - changing bits

Fitness function: check 2n(n-1) violations



Checkboard example Cont'd

e Fitness curves for different cross-over rules:

Fitness

Fitness

180 ¢

170 -

Lower-Triangular Crossing Over

1 A\
iy ML ’“”MWF
AN “ \ ‘ “

\

l

Y

160 L " w‘v H“,A
P
150 f
!
M
140qu
130~ : - : :
0 100 200 300 400 500
200 400 600 800

Generations

180

170
160 -
1501; /

140 |-/ |

180

170 -
160 |
150 )
140 -

130
0

Square Crossing Over

130 -
0

200 400 600

Verical Cuttmg Crossing Over

800

m “r WWIM

U‘ '[ 1 IW |
’W Wy

500 1000
Generations

1500



Why genetic algorithms work?

#* building blocks hypothesis
#* ... is controversial (mutations)

# sampling based hypothesis



Parameters of GA

# Encoding (into fixed length strings)

# Length of the strings;

# Size of the population;

# Selection method;

# Probability of performing crossover (p_ );
# Probability of performing mutation (p,.);

# Termination criteria (e.g., a number of generations, a
leaderboard mutability, a target fitness).



Usual settings of GA parameters

# Population size: from 20-50 to a few thousands
individuals;

# Crossover probability: high (around 0.9);

# Mutation probability: low (below 0.1).



#*

Demo:
a biomorph

A biomorph is a graphic configuration generated from nine genes.
The first eight genes each encode a length and a direction.
The ninth gene encodes the depth of branching.

Each gene is encoded with five bits.

The four first bits represent the value, the fifth its sign.

oN

Y
g

% Each gene can get a value from -15 to +15.
¢ value of gen nine is limited to 2-9.
There are : 8 (number of possible depths) x 24° (the 8 * 5 =40 bits encoding basic genes) =

8.8 x10*2 possible biomorphs. If we were able to test 21000 genomes every second, we would
need about 280 years to complete the whole search.

At the beginning, the drawing algorithm being known, we get the image of a biomorph.
The only data directly measurable are the positions of branching points and their number.
The basic algorithm simulates the collecting of these data.

Fitness function: the distance of the generated biomorph from the target one.



Applications

# optimization

# scheduling

#* bioinformatics,
# machine learning
#* planning

# multicriteria optimization



Where to use evolutionary algorithms?

# Many local extremes

#* Just fitness, without derivations
# No specialized methods

# Multiobjective optimization

# Robustness

# Combined with other approaches



Multiobjective optimization

# Fitness function with several objectives

# Cost, energy, environmental impact, social
acceptability, human friendliness

# min F(x)=min (f,(x), f,(x), ..., T.(X))

# Pareto optimal solution: we cannot improve one
criteria without getting worse on others

# GA: inreproduction, use all criteria



An example:
smart buildings

# simple scenario: heater, accumulator, solar
panels, electricity from grid

#* criteria: price, comfort of users (as the difference
in temperature to the desired one)

# chromosome: shall encode schedule of charging
and discharging the battery, heating on/off

# operational time is discretized to 1gmin intervals



Control problem for smart buildings

Parameters:

the price of energy from the grid varies during the
day

the prediction of solar activity

schedule of heater and battey

usual activities of a user

Neudobje




Smart building: structure of the
chromosome

# temperature: for each interval we set the desired
temperature between Tmin and Tmax interval

# battery+: if photovoltaic panels produce enough
energy we set: 1 charging, o no charging

# battery-: if photovoltaic panels do not produce
enough energy, we set: 1 battery shall discharge,
o battery is not used

# appliances: each has its schedule when it is used
(1) and when it is off (0)



Podanatemperatura

Enzrgijat

Erergija

Porabniki

Example of schedule
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Example of solutions and optimal front
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Strengths and weaknesses

#* robust, adaptable, general

#* requires only weak knowledge of the problem (fitness
function and representation of genes)

#* several alternative solutions

# hybridization and parallelization

# faster and less memory than exhaustive or random
search

* little effort to try

# suboptimal solutions
#* possibly many parameters
# may be computationally expensive

# no-free-lunch theorem



Neuroevolution: evolving neural
networks

* Evolving neurons and/or topologies
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Neuroevolution

*

»

*

Evolving neurons: not really necessary but
attempted

Evolving weights instead of backpropagation and
gradient descent

Evolving the architecture of neural network

% For small nets, one uses a simple matrix representing which
neuron connects which.

% This matrix s, in turn, converted into the necessary 'genes’,
and various combinations of these are evolved.

We shall review this after learning about neural
networks
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Learning

* Learning is the act of acquiring new, or modifying and reinforcing existing,
knowledge, behaviors, skills, values, or preferences
and may involve synthesizing different types of information.

e Statistical learning deals with the problem of finding a predictive function
based on data.

* The primary goals of statistical learning: prediction and understanding.

* Many different learning settings and data types, rapidly spreading in many
areas of science, technology, and analytics, e.g., the Nobel prize in physics
in 2024 to Hopfield and Hinton



Statistics and machine learning

e Definition from Wikipedia:
ML algorithms operate by building a model from example inputs i.e.,
samples.

* ML can also be viewed as compression



The Data Predicting Breast Cancer Recurrence

T el
J "':1;!“!'

S
w \/

v MUUW

Post-surgery data for about 1000 breast cancer patients.

4
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\

Provided by the Institute of Oncology, Ljubljana

+

Recurrence and time of recurrence.



Th e Data Predicting Breast Cancer Recurrence

classl class?2 menop stage grade hType PgR inv nLymph cTh hTh famHist LVI ER maxNode posRatio age
300 :11..82 0 1 2 2 1 0 0 1 1 0 3 0 1 2 3 2
301 4.89 1 0 1 2 1§ 0 0 2 1 0 0 o 2 1 4 3
302 14.63 0 1 1 - 2 0 0 0 0 0 1 @ 1 1 1 3
303 21..83 0 0 1 - 2 1 0 1 0 0 9 0 4 L 2 2
304 19.8 0 0 1 2 1 0 0 0 0 0 0 00 1 2 1 2
305 7.54 0 1 2 3 1 9 & 1 0 1 1 0 3 3 3 -
306 15.15 0 0 1 4 2 1 0 0 0 0 2 0 4 1 1 2
307 0.30 1 0 2 2 1 0 0 3 0 0 9 00 1 1 - 2
308 12.49 0 1 2 2 3 | 0 0 0 0 0 0 4 1 i | g
309 1.77 Il 0 2 3 1 1 2 2 i 0 9 L 3 3 3 Z

Each patient is described with 17 values:
- 15 patient’s features
- 2 values, which describe the outcome



1 instance - 1 patient Predicting Breast Cancer Recurrence

classl class2 menop stage grade hType PgR inv nLymph cTh hTh famHist LVI ER maxNode posRatio age
300 11.82 0 1 2 2 1 0 0 1 1! 0 3 0 2 3 2
301 4.89 1 0 1 2 0 0 2 1 0 0 0 2 1 4 3
302 14.63 0 1 ik 4 2 0 0 0 0 0 1 I 1 1 3
303 21.83 0 0 1 4 2 1 0 1 0 0 9 0 4 1} 2 2
304 19.87 0 0 1 2 1 0 0 0 0 0 0 0 1 2 1 2
305 7.54 0 1 2 3 1 9 2 1 0 1 1 0 3 3 3 4
206 1:Hi=1:5 0 0 1 4 2 | 0 0 0 0 ? Q4 | | 2
307 0.30 1 0 2 2 1 0 0 0 0 9 0 1 1 4 2
308 12.49 0 1 2 2 3 ] 0 0 0 0 0 0 4 1 1 5
309" 177 1 0 2 3 1 1 2 2 i 0 9 T 3 3 3 2

e Menopause?
* Tumor stage

e Hormonal therapy?
e Chemotherapy?

e Tumor grade N4 e Family medical history

* Histological type e Lymphovascular invasion?

* Progesterone receptor lvl. / \ * Estrogen receptor lvl.

¢ Invasive tumor type p——. e Size of max. removed node

* Number of positive lymph nodes » Ratio of positive lymph nodes

e Age group



Prognostic Features

Predicting Breast Cancer Recurrence

classl class2 menop stage grade hType PgR inv nLymph cTh hTh famHist LVI ER maxNode posRatio age
300 11.82 0 1 2 2 1 0 0 1 1 0 3 0 1 2 3 2
301 4.89 . 0 1 2 1 0 0 2 il 0 0 0 2 1 4 3
302 14.63 0 1 L 4 2 0 0 0 0 0 1 0 1 1. 1 3
303 21 .8 0 0 1} 4 2 1 0 1 0 0 9 0 4 1 2 2
304 19.87 0 0 i 2 1 0 0 0 0 0 0 0 1 2 | 2
305 7.54 0 2] 2 3 1 9 2 il 0 1 1 0 3 3 3 4
306 15.15 0 0 ] 4 2 | 0 (0] 0 0 2 Q4 ] ] 2
I 307 0.30 1 0 2 2 1 0 0 3 0 0 9 0 1 1 4 2 I
308 12.49 0 1 2 2 3 1 0 0 0 0 0 0 4 1 1 5
309 1.77 il 0 2 3 1 1 2 2 1 0 9 1 3 3 3 2
* Hormonal therapy?
* Chemotherapy?
\ 4

. Histological type

e Family medical history

" ~R ™ g - ~An s
\/A ¢ = asl ¢

-  Size of max. removed node
Oncologists use these attributes for prognosis

in every-day medical practice.



Ba Sic TaSk in M L Predicting Breast Cancer Recurrence

We want to learn from past examples,with known outcomes.

I

To predict the outcome for a new patient.



Basic notation of predictive modelling

 Cancer recurrence is a statistical variable named response or target or prediction variable that we
wish to predict. We usually refer to the response as 'Y .

Other input variables are called attributes, features, inputs, or predictors; we name them X,;
One observation, called also an instance or example is denoted as X;

* The input vectors form a matrix X ( 1 12 1p\
21 X22 ... X2p
X =
\Inl an * s xnp)

The model we write as Y —= f(X) € €

where € is independent of X, has zero mean and represents measurement errors and other
discrepancies.



Further notation for instances and attributes

* Suppose we observe Y; and X; = (xi’l,xi’z, ...xi’p)for 1 =12,..n

* We believe that there is a relationship between Y and X.

* We can model the relationship as _ f( ) 14
Y, = X . E.
I l. l

* Where fis an unknown function and € is a random error with mean zero.
* Take care, the notation may be confusing, we also use

( g;\
)




A simple example
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A simple example

e Assuming we know f(in red)

1.0




Different standard deviations of error

The difficulty of
estimating f will
depend on the
standard deviation

of the €’s.
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Income vs. Education and Seniority

Multidimensional X

15



15t goal of learning: prediction

* If we can produce a good estimate for f (and the variance of € is not
too large), we can make accurate predictions for the response, Y,
based on a new value of X,

* Example: Direct Mailing Prediction

* Interested in predicting how much money an individual will donate based on
observations from 90,000 people on which we have recorded over 400
different characteristics.

e Don’t care too much about each individual characteristic.
 Just want to know: For a given individual should | send out a mailing?



29 goal of learning: inference

* often we are interested in the type of relationship between Y and all the X,

* For example,
* Which particular predictors actually affect the response?
* |s the relationship positive or negative?
* |s the relationship a simple linear one or is it more complicated, etc.?
* Fora given (X, Y;), which feature values x;; are the most important to determine y;?

* Sometimes more important than prediction, e.g., in medicine.

* Example: Housing Inference
* Wish to predict median house price based on 14 variables.

* Probably want to understand which factors have the biggest effect on the response
and how big the effect is.

* For example, how much impact does a river view have on the house value etc.



How do we estimate f?

* We will assume we have observed a set of training data
XL 1) (XS, 1), (XL Y

* We must then use the training data and a statistical method to estimate f.

e Statistical Learning Methods:
* Parametric Methods
* Non-parametric Methods



Parametric methods

* They reduce the problem of estimating f down to one of estimating a set of parameters.
* They involve a two-step model-based approach

STEP 1:

Make some assumption about the functional form of f, i.e. come up with a model. The
most common example is a linear model, i.e.

f(Xi) :,Bo +:81Xi1 +182Xi2 +'”+:BpXip

More complicated and flexible models for f are often more realistic.

STEP 2:

Use the training data to fit the model, i.e. estimate f or equivalently the unknown
parameters such as B, B, B,,---B,,

For linear model the most common method uses ordinary least squares (OLS).




Example: a linear regression estimate

- Even if the
standard
deviation is low, .
we will still get a 3 i
bad answer if i -
we use the

wrong model.

ey
s
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f=pB,+ p U Education+ B, [1Seniority



Non-parametric methods

* They do not make explicit assumptions about the functional form of f.

 Advantage: They accurately fit a wider range of possible shapes of f.

* Disadvantage: A large number of observations may be required to
obtain an accurate estimate of f..




Example: a thin-plate spline estimate

- Non-linear regression
methods are more
flexible and can
potentially provide
more accurate
estimates.
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Trade-off between prediction accuracy and
model interpretability

 Why not just use a more flexible method if it is more realistic?

Reason 1:

A simple method such as linear regression produces a model which is much easier to
interpret (the inference part is better). For example, in a linear model, B; is the
average increase in Y for a one unit increase in X; holding all other variables constant.

Reason 2:

Even if you are only interested in prediction, so the first reason is not relevant, it is
often possible to get more accurate predictions with a simple, instead of a
complicated, model. This seems counter intuitive but has to do with the fact that it is
harder to fit a more flexible model.



A poor estimate: overfitting

- Non-linear
regression
methods can

also be too
flexible and
produce poor

estimates for f.

awgﬂ'ﬂ'l.
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Goodness of fit for three models

o LEFT
o Black: Truth
N Orange: Linear Estimate
o | Blue: smoothing spline
o | .o Green: smoothing spline
— o :
> = (more flexible)
L L0
o - 3 -
v 5
\ >
Sl O
? o
O — c e
4y
@
=
<+ — v _|
o - RIGHT
RED: Test MSE
N o | Grey: Training MSE
| | | | | | ° 5 | | | Dashed: Minimum possible
0 20 40 60 80 100 2 5 10 20 test MSE (irreducible error)

X Flexibility
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Supervised, unsupervised, semi-supervised, self-supervised,
weakly-supervised learning 1/2

We can divide learning problems into Supervised and Unsupervised situations

Supervised learning:
* Supervised Learning is where both the predictors, X,, and the response, Y,, are observed.

* e.g., linear regression

* Unsupervised learning:
* In this situation only the X.'s are observed.
* We need to use the X/s to guess what Y would have been and build a model from there.

* A common example is market segmentation where we try to divide potential customers into groups
based on their characteristics.

* A common approach is clustering.
* |dea: Maximizing initra-cluster similarity & minimizing inter-cluster similarity

Semi-supervised learning
* only a small sample of labelled instances are observed but a large set of unlabeled instances

* aninitial supervised model is used to label unlabeled instances

* the most reliable predictions are added to the training set for the next iteration of supervised
learning



A simple clustering example

od
o
= @
=
@ (o
4 ™
> ®
m_
-t
o —
e
m—

27



Supervised, unsupervised, semi-supervised, self-supervised,
weakly-supervised learning 2/2

 Self-supervised learning
* a mixture of supervised and unsupervised learning
* learns from unlabeled data

* the labels are obtained from related properties of the data itself, often leveraging the underlying
structure in the data

* usually predicts any unobserved or hidden part (or property) of the input from any observed or
unhidden part of the input.

e e.g., in NLP, we can hide part of a sentence and predict the hidden words from the remaining words

* e.g., in video processing, we can predict past or future frames in a video (hidden data) from current
ones (observed data)

* Weakly-supervised data

* noisy, limited, or imprecise sources are used to provide supervision signal for labeling large amounts
of training data to do supervised learning

* reduces the burden of obtaining hand-labeled data sets, which can be costly or impractical
* e.g., using a smart electricity meter to estimate household occupancy



Regression vs. classification

e Supervised learning problems can be further divided into

* Regression problems: Y is continuous/numerical. e.g.
* Predicting the value of certain share on stock market
* Predicting the value of a given house based on various inputs
* The duration in years till cancer recurrence

* Classification problems: Y is categorical, e.g.,
* Will the price of a share go up (U) or down (D)?
* |s this email a SPAM or not?
Will the cancer recur?
What will be an outcome of a football match (Home, Away, or Draw)?

Credit card fraud detection, direct marketing, classifying stars, diseases, web-
pages, etc.

* Note that we mostly predict probabilities of the categories

 Some methods work well on both types of problem, e.g., neural networks or kNN



Data mining (analytics, science): on what kinds of data”?

e Database-oriented data sets and applications

Relational database, data warehouse, transactional database

* Advanced data sets and advanced applications

Data streams and sensor data

Time-series data, temporal data, sequence data (incl. bio-sequences)
Structure data, graphs, social networks and multi-linked data
Object-relational databases

Heterogeneous databases and legacy databases

Spatial data and spatiotemporal data

Multimedia database

Text databases

The World-Wide Web

30



Association and correlation analysis

* Frequent patterns (or frequent itemsets)
* What items are frequently purchased together in the
supermarket?
* Association, correlation vs. causality

* A typical association rule
* Diaper =2 Beer [0.5%, 75%] (support, confidence)

* Are strongly associated items also strongly correlated?
* How to mine such patterns and rules efficiently in large datasets?

* How to use such patterns for classification, clustering, and other

applications?
31



Outlier analysis

e Qutlier: A data object that does not comply with the general behavior of
the data

* Noise or exception? — One person’s garbage could be another person’s
treasure

* Methods: byproduct of clustering or regression analysis, ...

e Useful in fraud detection, rare events analysis

32



Relational learning .

L e G i
 Several variants: F | 0.4 0.6 0.2 0.8

T 0.01 0.99

e Bayesian networks,
* inductive logic programming

 graph learning, e.g., link prediction @
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Generalization as a search

 So far, we presented the “learning as an optimization” ML view
* Inductive learning: find a concept description that fits the data

* Example: rule sets as description language
* Enormous but finite search space

e Simple solution:
* enumerate the concept space
 eliminate descriptions that do not fit examples
* surviving descriptions contain target concept



Learning as optimization

* Usually the goal of classification is to minimize the test error

* Therefore, many learning algorithms solve optimization problems, e.g.,
* linear regression minimizes squared error on the training set

* AntMiner algorithms minimize the classification accuracy of decision rules on the
training set using ACO

* to find a good architecture of neural networks, GAs can be applied and minimize the
prediction error on the validation set

* most learning methods use optimization algorithms to minimize the implicitly or
explicitly stated loss function, e.g., cross-entropy in neural network is minimized with
gradient descent, where cross-entropy is a distance between two distributions, the
predicted P and the true Q: H(P, Q) = ).,.ex P(x)logq(x)



Criteria of success for ML

* No single best ML method (no free lunch theorem)

* How to select the best model?
* measure the quality of fit, i.e. how well the predictions match the observed data
* measure on previously unseen data (called test set). Why? Can we do it many times?

* In regression, the most popular measure is the mean squared error
1
MSE = (v = f(x))’
=1

where y; is the true (observed) value of instance i, and f (x;) is its predicted value
* in classification, the classification accuracy = 1 —error rate is the most popular criterion

1
cA = EZ 10 = f()

where f(x;) is the predicted category
* We will say more about this topic later



No-Free-Lunch theorem

* In the "no free lunch" metaphor, |
each "restaurant” (problem-solving procedure) ﬂ
has a "menu" associating L
each "lunch plate" (problem)
with a "price" (the performance of the procedure in solving the problem).

* The menus of restaurants are identical except in one regard — the prices are
shuffled from one restaurant to the next.

* For an omnivore who is as likely to order each plate as any other, the average
cost of lunch does not depend on the choice of restaurant.

e But a vegan who goes to lunch regularly with a carnivore who seeks economy
might pay a high average cost for lunch.
* To methodically reduce the average cost, one must use advance knowledge of
* a) what one will order and
* b) what the order will cost at various restaurants.

* That is, improvement of performance in problem-solving hinges on using prior
information to match procedures to probléms.
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Consequences of the hoe sk
NFL theorem - A

If no information about the target
function f(x) is provided:

* No classifier is better than some
other in the general case.

* No classifier is better than random
in the general case.
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Contents

* Bias and variance of prediction models
* Bayes optimal classifier
e Simple regression models:
* [inear models, nearest neighbor, regression trees, regression rules
* Simple classification models:

* nearest neighbor, naive Bayes, decision trees, decision rules, logistic
regression

e Biases in data



A generalization problem

* Our ML methods have generally been designed to make error small
on the training data, e.g., with linear regression, we choose the line
such that MISE is minimized.

* What we really care about is how well the method generalizes i.e.
how well it works on new data. We call this new data “Test data”.

* There is no guarantee that the method with the smallest training
error will have the smallest test (i.e. new data) error.

* One approach to address the problem is to reserve a portion of the
training data to measure the generalization error, we this dataset
“evaluation dataset”. We use this dataset during training to guide the
learning process, e.g., to stop it. This approach is used especially with
overparametrized methods such as neural networks and in learning
settings with high likelihood of overfitting such as AutoML methods.



Training vs. test error

* In general the more flexible a method is the lower its training MSE
will be, i.e. it will “fit” or explain the training data very well.

 More flexible methods (such as splines) can generate a wider range of
possible shapes to estimate f as compared to less flexible and more restrictive
methods (such as linear regression). The less flexible the method, the easier
to interpret the model. Thus, there is a trade-off between flexibility and
model interpretability.

* However, the test MSE may in fact be higher for a more flexible
method than for a simple approach like linear regression.



Different levels of flexibility: example 1
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Different levels of flexibility: example 3

20

0 20 40 &0 80 100
po

LEFT

Black: Truth

Orange: Linear Estimate
Blue: smoothing spline
Green: smoothing spline (more flexible)

Mean Squared Emor

&

15

10

2 5 10 20

Flexibility

RED: Test MSE

Grey: Training MSE

Dashed: Minimum possible test MSE
(irreducible error)



Bias - variance trade-off

* The previous graphs of test versus training MSE’s illustrates a very important
trade-off that governs the choice of statistical learning methods.

* There are always two competing forces that govern the choice of learning
method, i.e. bias and variance.



Bias of learning methods

Bias in general: inclination or prejudice for or against one person or group, especially in a
way considered to be unfair.

Bias in ML refers to the error that is introduced by modeling a real-life problem (that is
usually extremely complicated) by a much simpler problem.

A common definition of bias:

Bias = E[Y]-f(x)

For example, linear regression assumes that there is a linear relationship between Y and
X. It is unlikely that, in real life, the relationship is exactly linear so some bias will be
present.

The more flexible/complex a method is the less bias it will generally have.



Variance of learning methods

e Variance refers to how much your estimate for f would change if you had a
different training data set.

* A common definition of variance:

Var = E[(Y - E[Y])?]

* Generally, the more flexible a method is, the more variance it has.



Low Variance High Variance
(Precise) (Not Precise)

Bias-variance illustration

Low Bias
(Accurate)

High Bias
(Not Accurate)

This work by Sebastian Raschka is licensed under a
BY Creative Commons Attribution 4.0 International License.



The trade-off?

* It can be shown that for any given, X=x,, the expected test MSE for a new Y at x,
will be equal to

Expected Test MSE=E(Y — f(x, ))2 = Bias’ +Var+ o’

Irreducible Error

where Bias = E[Y]-f(x) and Var = E[(Y - E[Y])?]

* What this means is that as a method gets more complex
* the bias will decrease and
* the variance will likely increase
* but expected test MSE may go up or down!

* The trade-off is only present if we assume fixed error!
* For some models there may be no trade-off!
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Bayes classifier

* In classification, the optimal classification for an instance (x,, y,) can
be obtained by selecting the class j which maximizes the probability

P(Y =j|X=x)

* This classifier is called the Bayes (optimal) classifier

* It implies that learning is actually an estimation of the conditional
data distribution



Bayes error rate

" The Bayes error rate refers to the lowest possible error rate that could
be achieved if somehow we knew exactly what the “true” probability
distribution of the data looked like.

" On test data, no classifier (or statistical learning method) can get
lower error rates than the Bayes error rate.

=" Of course, in real life problems, the Bayes error rate can’t be
calculated exactly (why not?) but it is useful to think about it
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Bayes classifier approximations

 Two models can be viewed as directly approximating the Bayes
classifier P(Y =j| X = x,)
* Naive Bayesian classifier

* uses Bayesian formula to get inverse conditional probabilities
e assuming conditional independence between features

P(C) - P(X1 Xy . Xa|C) _ P(C) - TT; PCXilC)

P(C|X{X, ..X,) = ~
(C1X1 X7 .. Xn) P(X,X, .. X,) [1; P(X;)

* Nearest neighbour classifier
* directly estimates the conditional probability using instances near to x,



K-Nearest Neighbors (KNN)

* k Nearest Neighbors is a flexible approach to estimate the Bayes
classifier.

* For any given x we find the k closest neighbors to x in the training
data, and examine their corresponding y.

* If the majority of the y's are orange, we predict the orange label
otherwise the blue label.

* The smaller that k is the more flexible the method will be.



KNN example with k = 3
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K-NN classifier

* Given a positive integer K and a test observation x,, the KNN classifier
first identifies the K points in the training data that are closest to x,,
represented by the set IV,.

* It then estimates the conditional probability for class j as the fraction
of points in Ny whose response values equal j:

Pr(Y = jlX = x¢) = ZI

’LEN()

* applies Bayes rule and classifies the test observation x, to the class
with the largest probability.



Simulated data:
K=10

Xo

KNN: K=10
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K=1and K=100

KNN: K=1

KNN: K=100
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Training vs. test error rates on the simulated data

* Notice that training
error rates keep
going down as k
decreases or
equivalently as the
flexibility increases.

Error Rate
010
|

 However, the test
error rate at first
decreases but then
starts to increase Training Errors

Test Erars

again, | | | | | | |
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A fundamental picture

* In general training errors
will always decline.

High Bias Low Bias
_ Low Variance High Variance
 However, test errors will

decline at first (as
reductions in bias
dominate) but will then
start to increase again (as
increases in variance
dominate).

Prediction Error

Training Sample

* This is a conventional
wisdom, but it is not true Low High
for all methods and all Model Complexity
training regimes.




The double descent curve

 While for some models, like kNN, there seem to be a trade-off
between bias and variance, this is not a universal phenomenon

* E.g., overparametrization in neural networks produce double descent
curve (similar evidence for random forests)

under-parameterized over-parameterized

Test risk

“classical”
regime

“modern”
interpolating regime

~ Training risk:

- . _Interpolation threshold

—

e

Capacity of ‘H

Belkin, M., Hsu, D., Ma, S. and Mandal, S., 2019. Reconciling modern machine-learning practice and the classical bias—variance trade-off. Proceedings of the National Academy of Sciences,
116(32), pp.15849-15854.



Precision vs. Significance
Accuracy vs. Precision
Bias vs. Variance
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K-nearest neighbor for regression

* KNN regression is similar to the kNN classifier.
* given a set of instances (x, y)

* To predict y for a given value of x, consider k closest points to x in
training data N,(x) and take the average of the responses. i.e.

fo=17 Y %

X;EN(X)



KNN Fits fork =1 and k=9




KNN fits in one dimension (k=1 and k = 9)

* black line: actual function,
* blue line: regressional kNN
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Choice of k in KNN

* If kis small, kNN is much more flexible than linear regression.
* Is that better?

* The results may be highly dependent on
the choice of k.




Example: two moons
dataSet Two-Moons Dataset
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KNN is not so good in high dimensional
situations

KNN Error vs. Number of Neighbors (k) on Moons Dataset

Training error
Test error

0.08F

0.06

Error rate

0.02

0.00

0 10 20 30 40
k (number of neighbors)

32



Speeding up KNN algorithm

* precondition: normalization of dimensions, e.g., to [0, 1]

* naive search for nearest neighbors: O(n-d-t)
* nis number of instances
* dis number of dimensions
* tis number of nearest neighbors

* exact search for low dimensional spaces

e k-d trees (d is around 10)

e quad-trees (d=2), octrees (d=3)

* R-tree (rectangular tree, also R+, R*, ...), d=2 or 3
e approximate search

e RKD-tree (random k-d tree)

* locally sensitive hashing (LSH),

* hierarchical k-means



Word bias have several meanings

. General / Everyday Meaning

Preference or prejudice toward or against something or someone, often in an unfair way.
* Example: “The judge must avoid bias in court.”
* - Synonyms: partiality, favoritism, prejudice.

Tendency to lean in a certain direction, consciously or unconsciously.
* Example: “She has a bias toward traditional art styles.”

. Social and Psychological Context

Cognitive bias: A systematic pattern of deviation from rational judgment or objective standards.
* Example: confirmation bias (favoring information that confirms one’s beliefs).

Social bias: Prejudice or discrimination based on group characteristics (e.g., gender, race, culture).
* Example: “Hiring practices should be checked for gender bias.”

. Statistics & Machine Learning

Statistical bias: Systematic error that leads an estimator or model to deviate from the true value.
* Example: “The sample mean is an unbiased estimator of the population mean.”

Bias—variance tradeoff: In machine learning, bias refers to the error introduced by simplifying assumptions in a model.
* High bias - model underfits the data.
* Low bias - model can better capture complexity.



Ethical consideration of social and cognitive
bias in ML models

 The word bias is ambiguous even within ML v

* bias in models:
* characteristic of models,

o affects error,
* unlikely to be ethically problematic
* when it can be problematic?

* bias in data:
e data unrepresentative of the true population,

* might be ethically problematic



Biases in the data

* Machine learning models are not inherently objective. Engineers train
models by feeding them a data set of training examples, and human
involvement in the provision and curation of this data can make a model's
predictions susceptible to bias.

* When building models, it's important to be aware of common human
biases that can manifest in your data, so you can take proactive steps to
mitigate their effects.

* The biases listed next provide just a small selection of biases that are often
uncovered in machine learning data sets; this list is not intended to be
exhaustive. Wikipedia's catalog of cognitive biases enumerates over 100
different types of human bias that can affect our judgment. When auditing
gour data, you should be on the lookout for any and all potential sources of

ias that might skew your model's predictions.




Reporting bias

* Reporting bias occurs when the frequency of events, properties,
and/or outcomes captured in a data set does not accurately reflect
their real-world frequency. This bias can arise because people tend to
focus on documenting circumstances that are unusual or especially
memorable, assuming that the ordinary can "go without saying."

« EXAMPLE: A sentiment-analysis model is trained to predict whether book
reviews are positive or negative based on a corpus of user submissions to a
popular website. The majority of reviews in the training data set reflect
extreme opinions (reviewers who either loved or hated a book), because
people were less likely to submit a review of a book if they did not respond to
it strongly. As a result, the model is less able to correctly predict sentiment of
reviews that use more subtle language to describe a book.



Automation bias

* Automation bias is a tendency to favor results generated by
automated systems over those generated by non-automated systems,
irrespective of the error rates of each (we also have the opposite bias)

« EXAMPLE: Software engineers working for a sprocket manufacturer were
eager to deploy the new "groundbreaking” model they trained to identify
tooth defects, until the factory supervisor pointed out that the model's
precision and recall rates were both 15% lower than those of human

inspectors. T

g



Selection bias

 Selection bias occurs if a data set's examples are chosen in a way that is not reflective
of their real-world distribution.

RAISE YOUR HAND
IF YOURE FAMILIAR
GTATISTCS LJ!TH SELECTION BIAS,

CONFERENCE[  AS YOU CAN SEE,
~7022~| TS A TERM MOST
PEOPLE KNOW...




Selection bias variants

* Selection bias can take many different forms:

* Coverage bias: Data is not selected in a representative fashion.

« EXAMPLE: A model is trained to predict future sales of a new product based on phone surveys
conducted with a sample of consumers who bought the product. Consumers who instead opted to buy a
competing product were not surveyed, and as a result, this group of people was not represented in the
training data.

* Non-response bias (or participation bias): Data ends up being unrepresentative
due to participation gaps in the data-collection process.

« EXAMPLE: A model is trained to predict future sales of a new product based on phone surveys
conducted with a sample of consumers who bought the product and with a sample of consumers who
bought a competing product. Consumers who bought the competing product were 80% more likely to
refuse to complete the survey, and their data was underrepresented in the sample.

e Sampling bias: Proper randomization is not used during data collection.

« EXAMPLE: A model is trained to predict future sales of a new product based on phone surveys
conducted with a sample of consumers who bought the product and with a sample of consumers who
bought a competing product. Instead of randomly targeting consumers, the surveyor chose the first 200
consumers that responded to an email, who might have been more enthusiastic about the product than

average purchasers.
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Group attribution bias

* Group attribution bias is a tendency to generalize what is true of
individuals to an entire group to which they belong. Two key
manifestations of this bias are:

* In-group bias: A preference for members of a group to which you also
belong, or for characteristics that you also share.

* EXAMPLE: Two engineers training a resume-screening model for software
developers are predisposed to believe that applicants who attended the same
computer-science academy as they both did are more qualified for the role.

* Out-group homogeneity bias: A tendency to stereotype individual
members of a group to which you do not belong, or to see their
characteristics as more uniform.

« EXAMPLE: Two engineers training a resume-screening model for software

developers are predisposed to believe that all applicants who did not attend a
computer-science academy do not have sufficient expertise for the role.



Implicit bias

* Implicit bias occurs when assumptions are made based on one's own
mental models and personal experiences that do not necessarily
apply more generally. We are often not aware of these biases, and

some may be contrary to our conscious beliefs.

 EXAMPLE: An engineer training a gesture-recognition model uses a head shake as a feature
to indicate a person is communicating the word “no.” However, in some regions of the world,
a head shake actually signifies “yes.” A common form of implicit bias is confirmation bias,
where model builders unconsciously process data in ways that affirm preexisting beliefs and
hypotheses. In some cases, a model builder may actually keep training a model until it
produces a result that aligns with their original hypothesis; this is called an experimenter's
bias.

« EXAMPLE: An engineer is building a model that predicts aggressiveness in dogs based on a
variety of features (height, weight, breed, environment). The engineer had an unpleasant
encounter with a hyperactive toy poodle as a child, and ever since has associated the breed
with aggression. When the trained model predicted most toy poodles to be relatively docile,
the engineer retrained the model several more times until it produced a result showing
smaller poodles to be more violent.
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Revision guestion:
How to measure bias and
variance of an ML method?



Background

* For a given data point xy,a model’s prediction can be decomposed as:
. IE[()A/(xO) — y(x0))*] = Bias%(x,) + Variance(x,) + Irreducible Error.

* Bias: error due to simplifying assumptions
* Variance: sensitivity to training set fluctuations
* Key idea: use resampling or cross-validation to estimate bias and variance



Practical steps 1/3

e Generate M training sets (bootstrap or k-fold)
* Train models on each set

* Collect predictions on a fixed test set for all models:
ym(xi) — fm(xi);
for each data point x; and model m.



Practical steps 2/3

* Compute mean prediction, bias® and variance per point
M
- 1 R
y() =22 ) I (1)
m=1
Bias (x;) = (y(x;) — y(x;))?

M
Variance(x) = 7= " () — y(x))?
m=1



Practical steps 3/3

* Average across all test data points

N

1

Bias? = Nz Bias? (x;)
i=1

N
1
Variance = Nz Variance (x;)

=1



Implementation

* Use bootstrapping or multilevel cross-validation to train multiple
models; compute bias and variance

e Use M = 30-100 for stable estimates



Interpretation

* High bias, low variance - underfitting
* Low bias, high variance - overfitting
* Low bias, low variance - good fit

* Plot bias? and variance vs model complexity for insights
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Data preprocessing

Feature subset selection: filter, wrapper and embedded methods

Feature creation: constructive induction

Feature selection extensions: unsupervised and semi-supervised learning, multi-
task, multi-view, multi-label learning

Model evaluation

* Dimensionality reduction



First steps in ML

* The data preparation step is seriously underestimated

Data
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Data preprocessing

Data cleansing: removing or correcting records that have corrupted or invalid values from raw data, and removing records
that are missing a large number of columns.

Instances selection and partitioning: selecting data points from the input dataset to create training, evaluation
(validation), and test sets. This process includes techniques for repeatable random sampling, minority class oversampling,
and stratified partitioning.

Feature tuning: improving the quality of a feature for ML, which includes scaling and normalizing numeric values,
imputing missing values, clipping outliers, and adjusting values that have skewed distributions.

Feature transformation: converting a numeric feature to a categorical feature (through discretization), or converting
categorical features to a numeric representation (through one-hot encoding, sparse and dense feature embeddings).
Some models work only with numeric or categorical features, while others can handle mixed-type features. Even when
models handle both types, they can benefit from different representations (numeric and categorical) of the same feature.

Feature extraction: reducing the number of features by creating lower-dimension, more powerful data representations
using techniques such as PCA, embedding extraction, and hashing.

Feature selection: selecting a subset of the input features for training the model, and ignoring the irrelevant or redundant
ones, using filter or wrapper methods. Feature selection can also involve simply dropping features if the features are
missing a large number of values.

Feature construction: creating new features by using different operators, such as logical, arithmetical, trigonometrical,
etc. Features can also be constructed by using domain knowledge, e.g., business logic from the domain of the ML use
case.
For unstructured data: often only modest preprocessing is needed for neural networks

* text: casing, tokenization, embedding lookup/calculation

* images: resizing, cropping, filters.



Why Reduce Dimensionality?

* Reduces time complexity: Less computation

* Reduces space complexity: Less parameters

* Potentially saves the cost of observing the feature
 Simpler models are more robust on small datasets
 More interpretable; simpler explanation

e Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3
dimensions



Feature subset selection

* Choose a small subset of the relevant features from the original
features by removing irrelevant, redundant and/or noisy features

* The aim: better learning performance, i.e. higher learning accuracy,
lower computational cost, or better model interpretability



Huge number of features

* Text classification, = 100,000 words in a dictionary

FFFFFFFFFF

W |

GeneChip*®
Mouse Genome

o : e
* Computer vision, = 1,000,000 pixels o




Evaluation of attributes

attr. description | attribute quality
of the problem evaluation evaluation

* Numerical evaluation and ranking of the attributes

* The success of the evaluation procedure depends on the role it plays in learning:
 feature subset selection
* building of the tree-based models
 constructive induction
* discretization
 attribute weighting
e comprehension
* prediction
* etc.



Attribute description

color weight shape size sort
red 12  round middle apple
yellow 20 conic large pear
red 15  round tiny apple
green 8 round small pear
yellow 22  conic large apple
mixed 12  conic small apple
green 15  round middle apple
mixed 8 round tiny apple
yellow 6 round small pear

- nominal attributes: ordered and unordered
= numeric attributes



Feature evaluation

* in order to select attributes, we have to evaluate (rank) them
 the success of feature evaluation is measured through the success of
downstream tasks, i.e. learning

* an example: feature evaluation in decision tree building
* in each interior node of the tree an attribute is selected which
attribute: color

determines split of the instances ‘
* the attributes are evaluated to ensure useful split ’%

green yellow red



Three types of feature selection methods

* Filter methods: independent on learning algorithm, select the most
discriminative features through a criterion based on the character of
data, e.g. information gain and ReliefF

* Wrapper methods: use the intended learning algorithm to evaluate
the features, e.g., progressively add features to SVM while
performance increases

* Embedded method select features in the process of learning



Feature selection: Filter methods



Heuristic measures for attribute evaluation

* Impurity based
* information theory based (information gain, gain ratio, distance measure, J-measure)
* probability based: Gini index, DKM, classification error on the training set
* MDL
* statistics G, X2
* mean squared and mean absolute error (MSE, MAE)
* assume conditional independence (upon label) between the attributes

* Context sensitive measures:
* Relief, Contextual Merit,
* random forests or boosting based attribute evaluation,



Information gain ribte: color
* measure the purity of label distribution before and after the split /%}

* impurity = entropy /\

I(r) = — Z p(r;)logs p (1)
S @ ®

I(t]4) = — Z p(vj) Z p(ti|v;) log, p (Ti|vy) green yell()w red
j=1 i=1

IG(A) = I(7) — I(7|A)

» each attribute is evaluated independently from others 1



Multivalued and numeric attributes

attribute: size

multivalued:
insufficient \
statistical support \
in certain splits @ | ﬂ
tny very  small  piddle large  very large huge
. small
numeric:
sometimes
|

requires prior f" %%; C
- . = I | | | .
d ISCI"Etlzathn 5 10 15 20 5 weight
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Attribute interactions

Jo

Size

large

small

Color

red

green

16



Relief algorithms

* criterion: evaluate attribute according to its power of separation
between near instances

Js

* values of good attribute should distinguish between near
instances from different class and have similar values for near
instances from the same class .



Relief algorithms

no assumption of conditional independence
context sensitive
reliable also in problems with strong conditional dependencies

:ncludecil in several machine learning systems (e.g., Weka, Orange, scikit-
earn, R

 Relief (Kira in Rendell, 1992): two class classification
* ReliefF (Kononenko, 1994): multi-class classification
* RReliefF (Robnik Sikonja in Kononenko, 1997): regression

Marko Robnik-Sikonja, Igor Kononenko: Theoretical and Empirical Analysis of ReliefF and RReliefF.
Machine Learning Journal, 53:23-69, 2003



Algorithm Relief

Input: set of instances <x;, 1>
Output: the vector W of attributes’ evaluations

set all weights W[A] :=0.0;
for 1:= 1 to m do begin
randomly select an instance R;
find nearest hit H and nearest miss M;
for A :=1 to #all attributes do
WIA] := W[A] - diff(A,R,H)/m + diff(A,R,M)/m;
end;



Function diff

n for nominal attributes

0; value( 4, 1) = value(A4, Iz)}

diff(4, I, ;) = {1- otherwise

n for numerical attributes

|value(A4,1;) — value(A4,1,)|
max(A4) — min( 4)

dlff(A, Il' 12) ==

o distance between two instances
(1,1, = Y diff(i, I, I,)
1,12 ; 1,42

o unknown values of attributes



Extension: ReliefF

* For multi-class problems
* Handles incomplete and noisy data

* More robust: uses k nearest instances from all the classes



The algorithm ReliefF

Input: set of instances <x;, ;>
Output: the vector W of attributes’ evaluations

for v:=1toado W, :=0.0;
for 1:=1 to m do begin
randomly select an instance R;
find k nearest hits H
for each classt# R, do
from class t find k nearest misses M(t)
forv:=1toado
update W, according to update formula
end;



Update formula

1
W, =W, — Econ(Av,Ri,H) +
(o
1 p(te) con(Ay, R;, M(t))

m 1o 1-— p(Ri,T)
t#R; ¢

k
1
con(A,,R;,S) = Ez diff( Ay, R;, S7)
j=1



In regression: RReliefF
W[A] := W[A] - diff(A,R,H)/m + diff(A.R, M)/m;

W[A] = P(different value of A|nearest instances with different prediction)
— P(different value of A|nearest instances with same prediction)

WI[A] = Pyajac — Paaj-ac
« after applying the Bayesian rule: P(A|B) = P(A)P(B|A)/P(B)

WA= = PaciaaPaa (1 — Pacjaa)Paa
Pqc 1 =Py

* we approximate this formula

* unified view on attribute evaluation in classification and regression

Marko Robnik-Sikonja, Igor Kononenko: An adaptation of Relief for attribute estimation in regression. Machine Learning,
Proceedings of ICML 1997



Feature selection: Embedded methods



Regularization for feature selection

* feature selection as part of learning (embedded method)

* loss function is composed of two components: prediction error and
number/weight of included features

LOGY,F) = ) 10 # f) +2 ) 1(4) € X)
i=1 j=1

* in regression we get similar expressions for ridge regression and lasso



Ridge regression
* Ordinary Least Squares (OLS) estimates Bs by minimizing
RSS = Z (yz — Po — Zﬁjxij) :

* Ridge regression minimizes a slightly different equation

n

2
p p

Z(yiﬁozﬁjfmj) +AZB?:RSS+
J=1 j=1

=1



Ridge regression adds a penalty on Bs |

* The effect of this equation is to add a penalty of the form
p
N
j=1

where the tuning parameter A is a positive value.
* This has the effect of “shrinking” large values of Bs towards zero.

It turns out that such a constraint should improve the fit, because shrinking the
coefficients can significantly reduce their variance

* Notice that when A =0, we get the OLS!



Credit data: ridge regression

* As A increases, the standardized coefficients shrink towards zero.

Standardized Coefficients
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Why can shrinking towards zero be a good thing?

* It turns out that the OLS estimates generally have low bias but can be highly
variable. In particular when n and p are of similar size or when
n < p, then the OLS estimates will be extremely variable.

* The penalty term makes the ridge regression estimates biased but can also
substantially reduce variance

* Thus, there is a bias/variance trade-off



Ridge regression bias / variance
* Black: Bias

* Green: Variance 3
* Purple: MSE

 Increase of A
increases bias but
decreases variance

Mean Squared Error




Bias / variance trade-off

* In general, the
ridge regression
estimates will be
more biased
than the OLS
ones but have
lower variance

High Bias Low Bias
Low Variance High Variance

Test Sam

Prediction Error

* Ridge regression
will work best in -
situations where Training Sample
the OLS
estimates have
high variance

Low High
Model Complexity



Computational advantages of ridge regression

* If number of features p is large, then using the best subset selection

approach requires searching through enormous numbers of possible
models

* With ridge regression, for any given A, we only need to fit one model
and the computations turn out to be very simple

* Ridge regression can even be used when p > n, a situation where OLS
fails completely!



The LASSO method

* Ridge regression isn’t perfect

* One significant problem is that the penalty term will never force any of
the coefficients to be exactly zero. Thus, the final model will include all
variables, which makes it harder to interpret

* A more modern alternative is the LASSO

* The LASSO works in a similar way to ridge regression, except it uses a
different penalty term



LASSQO’s Penalty Term

* Ridge Regression minimizes

n p ? p p
Z(%‘BOZ@'%;‘) +)\Z@2RSS
i=1 j=1 j=1 j=1

e The LASSO estimates the Bs by minimizing the

2
(%'BOZBJ'ZE@) +)\Z|ﬁj\ RSS
i=1 j=1 j=1



The difference between ridge regression and lasso

* This seems like a very similar idea but there is a big
difference.

* Using LASSO penalty, it could be proven mathematically that
some coefficients end up being set to exactly zero.

* With LASSO, we can produce a model that has high
predictive power and it is simple to interpret.



Standardized Coefficients

Credit data: Ridge and LASSO
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Selecting the tuning parameter A

* We need to decide on a value for A

 Select a grid of potential values, use cross validation to estimate the error rate
on test data (for each value of A) and select the value that gives the least error
rate.
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Feature selection: Wrapper methods



Wrapper approach

start with an empty set of features S={} // forward selection
repeat
add all unused features one by oneto S
train a prediction model with each set S
evaluate each prediction model
keep the best added featurein S
until all features are added to S
return the best set of features encountered

* high computational load but effective for a given learning model; attention to
data overfitting

* how would backward selection differ?



Model evaluation



Model evaluation metrics

Evaluation metrics: How can we measure accuracy? Other metrics to consider?

Regression: MSE, MAE

Classification: accuracy, sensitivity, specificity, AUC, precision, recall

Comparing classifiers:
* Mean and confidence intervals
* Cost-benefit analysis and ROC Curves
* Rank-based tests (Friedman/Nemenyi)

* Bayesian (hierarchical) tests
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Classifier evaluation metrics:
confusion matrix aka missclassification matrix

Confusion Matrix:

Actual class\Predicted class C, -C;
C, True Positives (TP) False Negatives (FN)
-C, False Positives (FP) True Negatives (TN)
Example of Confusion Matrix:
Actual class\Predicted | buy _computer | buy _computer | Total
class = yes =no

buy_computer = yes 6954 46 7000

buy computer = no 412 2588 3000

Total 7366 2634 10000

* Given m classes, an entry, CM;; ina confusion matrix indicates # of
instances in class i that were Iabeled by the classifier as class j

* May have extra rows/columns to provide totals .



Classification accuracy, error rate

A\P C -C
C TP FN P
-C FP TN N
P’ N’ All

* Classifier Accuracy (CA), or recognition rate: percentage of test set
instances that are correctly classified

Accuracy = (TP + TN)/AlI

 Error rate: 1 —accuracy, or Error rate = (FP + FN)/AIl



Sensitivity and specificity
A\P C -C

C TP FN P

~C FP TN N

P’ N’ All

Class Imbalance Problem:

One class may be rare, e.g. fraud, or HIV-positive

Significant majority of the negative class and minority of the positive class
Sensitivity: True Positive recognition rate

Sensitivity = TP/P
Specificity: True Negative recognition rate

Specificity = TN/N



Precision, recall and F-measures

* Precision: exactness, i.e what % of instances the classifier labeled as

positive are actu’ally positive = TP

Precision = TP/P precision = TP - FP
* Recall: completeness, i.e what % of positive instances did the

classifier label as positive? TP

Recall = TP / P (the same as sensitivity) recall = TP TN

* Perfect scoreis 1.0
* Inverse relationship between precision & recall

F measure (F, or F-score): harmonic mean of precision and recall,
P 2 X precision X recall

* Fg: wei_ghted measure of precision and recall & precision + recall
* assigns 3 times as much weight to recall as to precision

(1 + 3?) x precision x recall
Fp

32 x precision + recall



Example: precision and recall

Actual Class\Predicted class cancer =yes | cancer=no | Total Recognition(%)
cancer = yes 90 210 300 30.00 (sensitivity)
cancer = no 140 9560 9700 98.56 (specificity)

Total 230 9770 10000 96.40 (accuracy)

Precision =90/230 = 39.13%

Recall =90/300 = 30.00%
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Multiclass evaluation

no problems for classification accuracy
most other measures assume binary class, e.g., precision, recall, F,

multiclass extensions simulate binary case

* macro average:
e compute several one-versus-all scores and average
* assumes balanced class distribution, gives equal weight to each class

* micro average
e computes TP, FP, TN, FN for each class separately and then computes the measure

» assumes all instances are of the same importance; in case of imbalanced classes
this might be problematic



Multiclass example

* Let us compute precision P =TP / (TP+FP).

* Let us assume multi-class classification system with four classes and the
following numbers when tested:

* ClassA: 1 TPand 1 FP

* Class B: 10 TP and 90 FP

* ClassC:1TPand 1 FP

* ClassD:1TPand 1 FP

* P(A) =P (C) =P(D) = 0.5, whereas P(B)=0.1.

acro = (0.5+0.1+0.5+0.5) /4 =0.4

= (1+10+1+1) / (2+100+2+2) = 0.123

* A macro-averaged precision: P

* A micro-averaged precision: Pmicro



Error depends on decision threshold

* Example: False positive and false negative rate are computed based
on probabilities returned by classifier

P(Class=True |X,, X,, ...) 2 0.5

* We can change the two error rates by changing the threshold from
0.5 to some other value in [0, 1]:
P(Class=True [X,, X,, ....) 2 threshold



Varying the threshold

(]
©
gL
£ = = Qverall Error
. —— False Positive
g — [False Negative
LLI
N
N
o
2
T T T T T T
0.0 0.1 0.2 0.3 04 0.5
Threshold

* To reduce false negative rate, we would chose threshold other than 0.5, e.g., threshold <0.1
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ROC curve

 ROC curve shows both TP rate
and FP rate simultaneously

* FPR = FP/(FP+TN)
* TPR = TP/(TP+FN)

* To summarize overall
performance, we also use area
under the ROC curve (AUC)

* The larger the AUC the better is
the classifier. Why? What
would be an ideal ROC curve?

True positive rate

0.6 0.8 1.0

0.4

0.2

0.0

ROC Curve

0.0

0.2

I |
0.4 0.6

False positive rate

0.8

1.0




Model selection



Issues affecting model selection

Accuracy
* classification: classification accuracy, AUC, F,
* regression: MSE, MAE

Speed
* time to construct the model (training time)

* time to use the model (classification/prediction time)

Robustness: handling noise and missing values

Scalability: efficiency in disk-resident databases

Interpretability
* understanding and insight provided by the model

* other measures, e.g., goodness of rules, such as decision tree size or compactness of
classification rules
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Unsupervised feature selection

e criterion: preserve similarity between instances

» Example: SPEC, spectral feature selection

Zhao Z, Liu H. Spectral feature selection for supervised and unsupervised learning. In Proceedings of ICML 2007, pp. 1151-
1157.



Semi-supervised feature selection

* typically a small sample of labelled and a
large sample of unlabeled data is available

* principle: use the label information of
labeled data and data distribution or local
structure of both labeled and unlabeled
data to evaluate feature relevance
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Cheng, H., Deng, W., Fu, C., Wang, Y. and Qin, Z., 2011. Graph-based semi-supervised feature selection with application to automatic

spam image identification. In Computer Science for Environmental Engineering and Ecolnformatics (pp. 259-264).
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Stability of feature selection

* for high dimensional small sample data, the stability of feature selection is a
pressing issue, e.g., in microarray data, we might get similar classification
accuracy with different sets of features

Qriginal
* Solution: ensemble approach: D | Traiing dat
1. produce diverse feature sets .

 different feature selection techniques, v ' Y v
* instance-level perturbation D, D, ¥ BD,, D,
» feature-level perturbation | l l l
* stochasticity in the feature selector,

* Bayesian model averaging & & & &
« combinations of the above techniques &1 f r ¢'

2. aggregate them
* weighted voting
* counting




Dimensionality reduction



Feature Selection vs Feature Extraction

* Feature selection: Choosing k<d important features, ignoring the
remaining d — k
» Subset selection algorithms (Filter, Wrapper, Embedded)

* Feature extraction: Project the original
X:,1=1,...,d dimensions to new k<d dimensions, z;,j=1,...,k

» Typical statistical techniques: Principal components analysis (PCA), linear
discriminant analysis (LDA), factor analysis (FA)
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Feature reduction

= approximation of p-dimensional space of matrix X with lower
dimensional space

®» Qlso called feature extraction

» Simplest variant: Linear transformation, i.e. rotation in the direction of
the largest variance



Principle components analysis

® principle components analysis, PCA
= we iterafively find the orthogonal axes of the largest variance
» we use the new dimensions to approximate the original space
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Principal Components Analysis (PCA)

= Find a low-dimensional space such that when x is projected there,
information loss is minimized.

= The projection of x on the direction of wis: z = w'x
= Find w such that Var(z) is maximized
Var(z) = Var(w'x) = E[(w/x —w'lu)?]
= E[(w'x —w'h)(wix —wl]]
= E[W'(x —p)(x — H)'w]
=WE[(x —p)(x -p)lw =w'} w
where Var(x)= E[(x — ) (x —-u)T] = >



= Maximize Var(z) subjectto | [w] | =1

maxw1 Tyw, — a(w1 w; — 1)

Yw, =aw, thatis, w, is an eigenvector of )

Choose the one with the largest eigenvalue for Var(z) to
be max

» Second principal co nen’r ax Var(z,), s.t., | |w =] and orthogonal to
" max%v? “92 Enwp]o —ﬁ(]w(f%zzl—oﬂl 2| | °

> W, =qa w,thatis, w, is another eigenvector of )

and so on.



What PCA does

z=W'(x —-m)
where the columns of W are the eigenvectors of ), and m is the
sample mean
Centers the data at the origin and rotates the axes
A A

W z, o




How to choose k ¢

= Proportion of Variance (PoV) explained

/11"‘/12"“"/1k
A4+ -+ A+ 4 g

when A are sorted in descending order
» Typically, stop at PoV>0.9

= Scree graph plots of PoV vs k, stop at “elbow”



(a) Scree graph for Optdigits
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Neighbourhood preserving dimensionality reduction

* also called local embeddings
* SNE - Stochastic Neighbor Embedding
» t-SNE (t-distributed SNE)



Linear and local embedding

* PCA tries to find a global structure
* Low dimensional subspace
* Can lead to local inconsistencies
e Far away point can become nearest neighbors

* t-SNE is an alternative dimensionality reduction algorithm.

* t-SNE tries to preserve local structure
* Low dimensional neighborhood should be the same as the original neighborhood.

* Unlike PCA almost only used for visualization
* No easy way to embed new points



PCA 2d
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Stochastic Neighbor Embedding (SNE)

* SNE basic idea:

* “Encode” high-dimensional neighborhood information as a distribution

* Intuition: Random walk between data points.
* High probability of jumping to a close point

* Find low dimensional points such that their neighborhood
distribution is similar.

* How do you measure the distance between distributions?

* Most common measure: KL divergence



Neighborhood Distributions

* Consider the neighborhood around an input data point x; € R¢
* Imagine that we have a Gaussian distribution centered around x;

* Then the probability that x; chooses some other data point x; as
its neighbor is in proportion with the density under this Gaussian

* A point closer to x, will be more likely than one further away



SNE objective

* Given Xy, .., X, € R® we define the distribution of distances between points P;
* Goal: Find good embedding y,, .., y, € R for some d < D (normally 2 or 3)

* How do we measure an embedding quality?

* For points y,, .., y,, € R4 we can define distribution Q; similarly to P;

e (—|lyY —yU]?)
Dok ik exp (—[ly®) — y(®I[]2)

Qi

* Optimize Q to be close to P
* Minimize KL-divergence

* The embeddings y,, .., ¥, € R® are the parameters we are optimizing.
* How do you embed a new point? No embedding function, but there are ways.



Kullback—Leibler divergence

KL divergence measures distance between two distributions, P and Q:

KL(QIP) = 3 stog (2 )
il

ij

Not a metric function - not symmetric!

Code theory intuition: If we are transmitting information that is distributed
according to P, then the optimal (lossless) compression will need to send on

average H(P) bits.

What happens if you expect P (and design your compression accordingly), but
the actual distribution is Q?

* will send on average H(Q) + KL(Q| | P) bits

* KL(Q]||P)is the ”penalty” for using the wrong distribution



Crowding Problem

* In high dimensions, we have more room, points can have a lot of
different neighbors

* In 2D, a point can have a few neighbors at distance one all far from each
other - what happens when we embed in 1D?

* This is the “crowding problem” - we don’t have enough room to
accommodate all neighbors.

* This is one of the biggest problems with SNE.

* t-SNE solution: Change the Gaussian in Q to a heavy-tailed distribution.
* if Q changes slower, we have more “wiggle room” to place points at.



CNN features

t-SNE 2d
embedding

A8 4,

http://cs.stanford.edu/people/karpathy/cnnembed



CNN features

t-SNE 2d
embedding

https://lvdmaaten.github.io/tsne



t-SNE summary

t-SNE is a great way to visualize high-dimensional data

Helps understand “black-box” algorithms like DNN.

Reduced “crowding problem” with heavy-tailed distribution.

Non-convex optimization - solved by gradient descent (GD) with momentum.

Maaten, L.v.d. and Hinton, G., (2008) Visualizing data using t-SNE. Journal of
Machine Learning Research, Vol 9(Nov), pp. 2579—2605, [PDF]

Wattenberg, M., Viégas, F. and Johnson, I. (2016) How to Use t-SNE
Effectively, Distil https://distill.pub/2016/misread-tsne/

Policar, P. OpenTSNE, https://github.com/pavlin-policar/openTSNE
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Topics overview

 Basics of artificial neural networks (revision)
* Backpropagation (revision)

* Deep learning

e Convolutional neural networks

* Autoencoders

* Generative adversarial networks

* Robustness

We will mention transformer networks in the natural language processing topic.



Artificial neural networks

* many approaches, we shall cover the basic ideas
e currently very strong interest, especially in deep neural networks

e http://www.deeplearningbook.org (from 2016, see also other newer
literature in the introductory slides 01)




Artificial neural networks:
brain analogy .
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learning: error backpropagation



A neuron

 Computational units, passing messages (information) in the network,
typically organized into layers

y = 0(Ui=o WiX;)

* where x; are the inputs, x, = 1 (bias term), w; are weights of the
neuron, and o is a non-linear activation function



Activation functions

* examples: step function, sigmoid (logistic)

fx) = —°

1 +e

A

1

0,5




Activation functions

* RelLU (rectified linear unit)
f(x) = max(0, x)

* softplus / approximation of ReLU with
continuous derivation
f(x) = In(1+eX)

* ELU (Exponential Linear Unit)

c-(e"—1), forx<0
X forx >0

ELU (x) = {

* Leaky RelLU: like ReLU but small slope for
negative values instead of a flat slope

* many others

0,5




Why nonlinear?

What is a derivative of a sigmoid?



A multi-layer feed-forward NN

Output vector t

Output layer

Hidden layer ‘

\

Input vector: X |

/LWU

Input layer




How a multi-layer NN works?

The inputs to the network correspond to the attributes measured for each training tuple
Inputs are fed simultaneously into the units making up the input layer
They are then weighted and fed simultaneously to a hidden layer

The number of hidden layers is arbitrary; if more than 1 hidden layer is used, the network is
called a deep neural network

The weighted outputs of the last hidden layer are input to units making up the output layer,
which emits the network's prediction

The network is feed-forward: None of the weights cycles back to an input unit or to an output
unit of a previous layer

If we have backwards connections, the network is called a recurrent neural network

From a statistical point of view, networks perform nonlinear regression: Given enough hidden
units and enough training samples, they can closely approximate any function

10



Feed-Forward Network

* neurons are activated progressively throug layers from
input to output

LayerO Hickden layers Layer 4
Input layer Output layer

11



Feed-Forward Network

* Values are propagated through the network to the output, which
returns the prediction

Next 6 slides by Andrew Rosenberg 12



Feed-Forward Networks




Feed-Forward Networks




Feed-Forward Networks




Feed-Forward Networks




Feed-Forward Networks

q” ) 92,0
Pou > f2.1
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Softmax

* |n classification, softmax is often
used for the last layer

* normalizes the output scores to be
a probability distribution (values
between 0 and 1, the sum is 1)

€
Yi = -
2
jegroup
J [
l_yi (l_yl)



Criterion function

* together with softmax we C=- Et{\log Y]
frequently use cross entropy as 7 arget value
loss (cost) function C

dC dC 9y;
= E L=y —t,
aZi F Gy] aZi



Backpropagation learning algorithm for NN

* Backpropagation: a neural network learning algorithm

 Started by psychologists and neurobiologists to develop and test computational

analogues of neurons

* A neural network: a set of connected input/output units where each connection has

a weight associated with it

* During the learning phase, the network learns by adjusting the weights so as to be
able to predict the correct class label of the input tuples

» Also referred to as connectionist learning due to the connections between units

20



Backpropagation algorithm

Iteratively process a set of training tuples & compare the network's prediction with the actual known

target value

For each training tuple, the weights are modified to minimize the mean squared error between the

network's prediction and the actual target value

Modifications are made in the “backwards” direction: from the output layer, through each hidden layer

down to the first hidden layer, hence “backpropagation”

Steps
* Initialize weights to small random numbers, associated with biases
* Propagate the inputs forward (by applying the activation function)
* Backpropagate the error (by updating weights and biases)

e Terminating condition (when error is very small, etc.)

21



Gradient descent (GD)

 Gradient descent is an efficient local optimization in R"

* Local minimum of function f: R™ - R is a point x for which f(x) < f(x’) for all x’ that are

“near” x

* Gradient Vf (x) is a function Vf: R™ > R" comprising n partial derivatives:

of of ﬁ)

, ) eee)
dx; 0x, 0x,

Vi(x) = (

* The GD optimization moves in the direction of -V (x)



llustration of GD

A0)



GRADIENT-DESCENT(f, X0, y, T) {

// function f, initial value x0, fixed step size y, number of steps T
X_best = x =x0; // n-dimensional vectors, initially set to the initial value
f best=f x=1f(x_best);
fort=0toT—1do{

Xx_next=x-vy = Vf(x); // Vf(x), x, and x_next are n-dimensional

GD f next = f(x_next)
algorithm if (f next <f x)
X_best = x_next;

X =X_hext;

f x=f next;
}

return x_best ;

}



Chain rule of derivation

* In a network, the output of each neuron is a function of the activation function
and all its inputs, where the inputs may again be composite functions of
neurons in previous layers

* To compute the gradient of a composite function, we use the chain rule of
derivation

flg) =f(g®)g' )



Error Backpropagation

* We will do gradient descent on the whole network.
* Training will proceed from the last layer to the first.

Next 18 slides by Andrew Rosenberg
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Error Backpropagation

* Introduce variables over the neural network

52 {ww? Wik, wkl}

Wkl

27



Error Backpropagation .
0 = {wijawjk7wkl}
* Introduce variables over the neural network

 Distinguish the input and output of each node

28



Error Backpropagation

52 {wma Wik, wkl}

a; = E Wiz Ak = E :wjkzj a; = E Wl 2k
7 J k

zj = g(a;) zr = g(ax,) 2 = g(ay)

29



Error Backpropagation

Training: Take the gradient of the last component and iterate backwards

a; = E Wij 24 ag = E :wjkzj a; = E Wk 2k

7 J k
zj = g(ay) 2k = g(ar) 21 = g(ar)

% a; <] ag 2k aj 2

30



Error Backpropagation
RO) = — 3 Ll — f(za)

N

1 N ,
= ﬁnzzo§(yn—f(ﬂ3n))

Empirical Risk Function

31



Error Backpropagation

Optimize last layer weights w,

OR 1
(‘9wkl B N ; [

oL,

(‘9al,n

|

L, =

(‘9al,n

8wkl

|

1
2

(yn — f(@n))’

Calculus chain rule
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Error Backpropagation

2
Optimize last layer weights w,, Lp = ) (Yn — f(@n))

el S Z dayn Calculus chain rule
(9wkl (904 n| | Owg

OR 1 5 [85(% —g(az,n)>2] lé’az,n]

8wkl

aal,n




Error Backpropagation

2
Optimize last layer weights w,, Lp = ) (Yn — f(@n))

el S Z dayn Calculus chain rule
(9wkl (904 n| | Owg
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Error Backpropagation 1

Optimize last layer weights w,, Ln = 2 (Yn

- Z 8al,n
(9wkl (904 n | | Owk

OR 1 3%(% — g(al,n))Q azk,nwkl
Owp

8al,n

— f(wn))2

Calculus chain rule




Error Backpropagation 1

2
Optimize last Iayer weights Wy Lp = ) (Yn — f(@n))

_ Z dai,n Calculus chain rule
8wkl 8al N 8wkl |

Z[ _ <am>>”025ﬁm: _ % —(yn — 21.0)g (au,

8&[ N

8wkl

n




Error Backpropagation

Optimize last hidden weights w;,

8ak,n

i = 5 2= 3 |

(?wjk

|

OR
QW
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Error Backpropagation

Optimize last hidden weights w;,

8ak,n

o (‘3Ln 8al,n
8wjk N Z [Z 8al,n 5’ak n

|

5’wjk

|

OR 1
A xr 0 n n
0w N zn: Lk,

Multivariate chain rule
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Error Backpropagation

OR

Optimize last hidden weights w. — = — E O 2
p g jk awkl N l,n k,n
oL, Oa [ Oa
= — E E ° bin ko Multivariate chain rule
8w3k 8&[ N 8ak N 8wjk

aaln
3wjk — _Z Z5laakn] Zjn]




Error Backpropagation

OR

Optimize last hidden weights w;, aTkl — N Z 5l,nzk,n
aLn (904 n -aa/k n
= — ’ ’ Multivariate chain rule
8'wjk Z Z Oayn Oak | | Owjk
8al N
— ) ~ a; = Y wrg(ak)
3ka Z Z B | ;




Error Backpropagation
Nzn e

Optimize last hidden weights w;, Ow
kl

OL, Oa da
n l"] [ kn] Multivariate chain rule

8w3k N Z [Z day aak’,n Owi,

OR 1 [Z 5ZUJI<:lg/(ak,n)‘ [2jn] = %Z Ok [2j.m
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Error Backpropagation

Repeat for all previous layers

aR L 8@[ n_ . 1 , B 1

Owy Z laaz n] lawkz N zn: [_ (W = 210)9 ()] 2 = N zn:(sl’nzk’"
8R o 8ak n| 1 , | B 1 |
owp,. N Z [aak; n) [Owj| N zn: Zal’”wklg <a’fan)] 2 = N Zn:(sk,nzg,n
OR o 8aj,n o 1 s | - 1 | |
6wij - N Z [@aj n | 3?1)@']' ] N ; ; 5k,nw]kg (aj,n) Zim — N ; 53’7@2@7%
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Error Backpropagation

Now that we have well defined gradients for each parameter, update using Gradient Descent

OR

t+1 t
w5 = W — Uwij
I S OR
gk - gk nwjk
OR

t+1 ¢
Wi = Wy —N——

Wkl
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Error Back-propagation

* Error backpropagation unravels the multivariate chain
rule and solves the gradient for each partial component
separately.

* The target values for each layer come from the next layer.
* This feeds the errors back along the network.

2 a; Zj ak Zk a 2

Tall w1

_ "



Learning with error backpropagation

e randomly initialize parameters (weights)
e compute error on the output

* compute contributions to error, 0,,, on each step
backwards

df,(e) .

W= Wean 770 1

E]‘

df,(e) .

&

* step
W' =W + 170,
o epoch (x2)1 e T 11O
* batch

 minibatch
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Defining a network topology

e Decide the network topology:
Specify # of units in the input layer, # of hidden layers (if > 1), # of units in each

hidden layer, and # of units in the output layer

 Normalize the input values for each attribute measured in the training tuples to
[0.0—1.0]

* Oneinput unit per discrete attribute value, 1-hot encoded
* For classification and more than two classes, one output unit per class is used

* Once a network has been trained and its accuracy is still unacceptable, repeat
the training process with a different network topology or a different set of initial
weights

N XA T T
A oAl 7
Oyl
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Neural network: strengths and weaknesses

* Weakness
* Long training time
* Require a number of parameters typically best determined empirically, e.g., the network topology
or “structure.”

* Poor interpretability: difficult to interpret the symbolic meaning behind the learned weights and
of “hidden units” in the network

* Easy to overfit without an evaluation set

* Strength
* High tolerance to noisy data
* Good generalization to untrained patterns
* Well-suited for continuous-valued inputs and outputs
e Algorithms are inherently parallel
* Builds more advanced representation

* Successful on an array of real-world data, especially images, text, and time-series, e.g., one of the
early successful deep networks was applied to hand-written letters

* Techniques exist for the extraction of explanations from trained (small) neural networks
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Efficiency and interpretability

 Efficiency of backpropagation:
Each epoch (one iteration through the training set) takes O(|D| * w), with |D]|
training instances and w weights, but # of epochs can be exponential to n, the
number of inputs, in worst case (not in practice)

* For easier comprehension: Rule extraction by network pruning

* Simplify the network structure by removing weighted links that have the least
effect on the trained network

* Then perform link, unit, or activation value clustering

* The set of input and activation values are studied to derive rules describing the
relationship between the input and hidden unit layers

* Sensitivity analysis: assess the impact that a given input variable has on a network
output. The knowledge gained from this analysis can be represented in rules

* Recent attempts tend to learn interpretation along with learning
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Overtitting and model complexity

 which curve is
more plausible

given the data?
e overfitting

>

I

* neural nets are =
especially prone Qo
to overfitting S

* why?

iInput = X T
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Prevention of overfitting

* Evaluation set

* Weight-decay

* Weight-sharing
 Early stopping

* Model averaging

e Bayesian fitting of neural nets:
* distributions instead of weights,
* inference as sampling from distributions

* Dropout
* Generative pre-training
* etc.



Deep learning = learning of hierarchical represenation

ion

Low-Level| |Mid-Level| |High-Level Trainable
— — g
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013] o1



Types of NN architectures

* Historically, feed-forward networks were the most commonly used;
here, neurons are activated progressively through layers from input
to output

 However, we often combine different types of layers

* Examples of other architectures: recurrent, convolutional,
transformer



Another option:
Level jumping or
Skip-connections

e prevents vanishing gradients




Recurrent networks

* back connections

o
@

(a) Recurrent Neural Network (b) Feed-Forward Neural Network

* biologically more
realistic

e store information
from the past

 more difficult to
learn
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Recurrent networks
for sequence learning

* unrolled network

* equivalent to deep
networks with one
hidden level per time
slot

* but: hidden layers share
weight (less parameters)

time -

Jndino
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Convolutional neural networks (CNN)

Convolution Pooling Convolution Pooling Fully Fully
Connected Connected

BES%u.

Input Image Feature maps Pooled Feature maps Pooled Dog (0.1)
Feature Maps Feature Maps . Cat(0.4)

Deer(0.94)

Lion(0.2)
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Convolution

an operation on two functions

(f and g) that produces a third
function expressing how the shape of
one is modified by the other.

Fra®) 2 [ fg(t-md

for discrete functions

(f*g)[n Z fimlgln — m]

m=—0oo

Convolution
A
9N

fkgQ
in¥
Ml
|4
gk f
N
[ N

57



Convolutional Neural Network (CNN)

e Convolutional Neural Networks are inspired by mammalian visual
cortex.

— The visual cortex contains a complex arrangement of cells, which are
sensitive to small sub-regions of the visual field, called a receptive field.
These cells act as local filters over the input space and are well-suited to
exploit the strong spatially local correlation present in natural images.

— Two basic cell types:

* Simple cells respond maximally to specific edge-like patterns within their receptive
field.

 Complex cells have larger receptive fields and are locally invariant to the exact
position of the pattern.



Convolutional neural networks (CNN)

e asuccessful approach in
image analysis, also used in
language processing

* idea: many copies of small
detectors used all over the
image, recursively combined,

* detectors are learned, NeSe
combinations are learned R




2d convolution for images
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Basic Idea of CNNs

Hidden layer
G G Input



Basic Idea of CNNs




Basic Idea of CNNs

Hidden layer

R

Input



Basic Idea of CNNs

Hidden layer

Input



Convolutional Network

The network is not fully
connected.

Different nodes are /

responsible for different

regions of the image. =
This allows for robustness

to transformations.

Convolution is combined
with subsampling.

/




CNN Architecture: Convolutional Layer

 The core layer of CNNs

* The convolutional layer consists of a set of filters.
— Each filter covers a spatially small portion of the input data.

e Each filter is convolved across the dimensions of the input data,
producing a multidimensional feature map.

— As we convolve the filter, we are computing the dot product between the
parameters of the filter and the input.

* Intuition: the network will learn filters that activate when they see
some specific type of feature at some spatial position in the input.

* The key architectural characteristics of the convolutional layer is
local connectivity and shared weights.



Neural implementation of convolution

* weights of the same colors have
equal weights

» adapted backpropagation

* images: 2d convolution

* languages: 1d convolution +
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CNN Architecture: Pooling Layer

* Intuition: to progressively reduce the spatial size of the representation, to reduce the
amount of parameters and computation in the network, and hence to also control
overfitting

* Pooling partitions the input image into a set of non-overlapping rectangles and, for
each such sub-region, outputs the maximum value of the features in that region.

224x224x64 Input
112x112x64
pool Single depth slice
1111 ]2]4
max pool with 2x2 filters
SReN 7 | 8 and stride 2 6|8
I T 3(2[1]o0 ] 3| 4
4

224 = : T
8, downsampling m—

224 y

\j



CNN: pooling

* reduces the number of connections to the next layer (prevents
the excessive number of parameters, speeds-up learning,
reduces overfitting)

* max-pooling, min-pooling, average-pooling

* the problem: after several layers of pooling, we lose the
information about the exact location of the recognized pattern
and about spatial relations between different patterns and
features, e.g., a nose on a forehead



Building-blocks for CNN’s

[ = WA U-kit pooing

\ mean or subsample also used Stage )

ryi,j = f(aij) _ N

o f(@)=lls " oaoe

\ f(a) = sigmoid(a) )

4 Shared weights )

a;; = Zk,z@z'—k,j—l con\;?ellut(iaonal

\ only parameters J y
% _input
Image

Feature maps of a larger
region are combined.

Feature maps are
trained with neurons.

Each sub-region yields a
feature map, representing
its feature.

Images are segmented into
sub-regions.
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Full CNN

i 'normal’

connects to neural network

several feature maps

hon-linear
stage

non-linear
stage

convolutional
stage

non-linear
stage
non-linear
stage
convolutional
stage

layer 1

A\

will have different filters

(l,q) _ q
Aij = Zk,z Wy, 1%i—k,j—1
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Convolutional networks: illustration
on image recognition

e a useful feature is learned and used on several

positions

e prevents dimension hopping

* max-pooling

representation by
active neurons

7

image

o2

translated
representation

translated
image



CNN early success: LeNet

handwritten digit recognition by Yann LeCun,
several hidden layers

several convolutional filters

pooling

several other tricks



LeNet5 architecture

* handwritten digit recognition

C3: f. maps 16@10x10
S4: f. maps 16@5x5

C5: layer pg: jayer OUTPUT

C1: feature maps

INPUT
30x32 6@28x28

S2: f. maps ;;' '
e 6@14x14 |

s | Com— | E
‘ | *  Ful connection | Gaussian
Convolutions Subsampling Convolutions ~ Subsampling Full connection
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* |nput:

Hand-written Digit Recognition

ol N\ (/A2
due2adQ 2 A5
3¢ 794943046 >509
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Errors of LeNet5

80 errors in
10,000 test
cases
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Benefits of CNNs

* The number of weights can be much less than 1 million fora 1
mega pixel image.

* The small number of weights can use different parts of the
image as training data. Thus we have several orders of
magnitude more data to train the fewer number of weights.

 We get translation invariance for free.

* Fewer parameters take less memory and thus all the
computations can be carried out in memory in a GPU or across
multiple processors.



1d convolution for text

e convolution
on words,
lemmas, or
characters

[ .. llvesina

house.|Tinajcomesfhome very late ]
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Example: what the following CNN returns 1/2

We have a convolutional neural network for images of 5 by 5 pixels.

In this network, each hidden unit is connected to a different 4 x 4 region of the input image:

The first hidden unit, h1, is connected to the upper left 4x4 portion of the input image (as shown).

The second hidden unit, h2, is connected to the upper right 4x4 portion of the input image (as shown).

The third hidden unit, h3, is connected to the lower left 4x4 portion of the input image (not shown in the diagram).
The fourth hidden unit, h4, is connected to the lower right 4x4 portion of the input image (not shown in the diagram).
Because it's a convolutional network, the weights (connection strengths) are the same for all hidden units: the only
difference between the hidden units is that each of them connects to a different part of the input image.

In the second diagram, we show the array of weights, which are the same for each of the four hidden units.
For hl, weight w1l is connected to the top-left pixel, i.e. x11, while for hidden unit h2, weight w1l connects to the plxe‘l o
that is one to the right of the top left pixel, i.e. x12. A

Imagine that for some training case, we have an input image where each of the black pixels in the top diagram
has value 1, and each of the white ones has value 0. Notice that the image shows a "3" in pixels.

The network has no biases. The weights of the network are given as follows:
wll=1w12=1w13=1w14=0w21=0w22=0w23=1w24=0w31=1w32=1w33=1w34=0w41=0w42=0w43=1w44=0

The hidden units are linear.

For the training case with that "3" input image, what is the output y1, y2, y3, y4 of each of the four hidden units?



Example: what the following CNN returns 2/2
@

W Wiz W13 Wia
Waq Woo Wag Woy
Wa1 W3z W33 Wi
W1 Wz Wy3 Wiy
Wi = wi, =1 wiz =1 wie =0




Autoencoders

* Autoencoders are designed to reproduce their input, especially for
images.

* The key point is to reproduce the input from a learned encoding.
* The loss function is the reproduction error

Input image Reconstructed image

Latent Space
Representation

o

https://www.edureka.co/blog/autoencoders-tutorial/



Autoencoders: structure

* Encoder: compress input into a latent-space of usually smaller
dimension. h = f(x)

* Decoder: reconstruct input from the latent space. r = g(f(x))
with r as close to x as possible

Qriginal Input Latent Representation Reconstructed Output

—-— Encoder — — Decoder —-
X h r

h

https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f



Autoencoder applications: denoising

* Denoising: input clean image + noise and train to reproduce
the clean image.

—+| Encoder —ri—» Decoder — -2

L ompréssed
representat ion

The feature we want to
extract from the image

Moisiy input Dencised image

https://www.edureka.co/blog/autoencoders-tutorial/



Denoising autoencoders

e Basic autoencoder trains to minimize the loss between x and
the reconstruction g(f(x)).

* Denoising autoencoders train to minimize the loss between x
and g(f(x+w)), where w is random noise.

* Same possible architectures, different training data.

llﬂllll

https://blog.keras.io/building-auto s.html



Autoencoder applications: colorization

* Image colorization: input black and white and train to produce
color images

https://www.edureka.co/blog/autoencoders-tutorial/



Autoencoder applications: watermark removal

e Watermark removal

https://www.edureka.co/blog/autoencoders-tutorial/



Properties of autoencoders

* Data-specific: Autoencoders are only able to compress data
similar to what they have been trained on.

* Lossy: The decompressed outputs will be degraded compared
to the original inputs.

* Learned automatically from examples: It is easy to train
specialized instances of the algorithm that will perform well on
a specific type of input.

https://www.edureka.co/blog/autoencoders-tutorial/



Bottleneck layer (undercomplete)

e Suppose input images are n x n and the latent space is
m<nxn.

* Then the latent space is not sufficient to reproduce all images.

* Needs to learn an encoding that captures the important
features in training data, sufficient for approximate
reconstruction.

ccccccccccc
Representation




GANS

Generative
Learn a generative model

Adversarial
Trained in an adversarial setting

Networks
Use Deep Neural Networks



Why Generative Models?

We have only seen discriminative models so far

Given an image X, predict a label Y

Estimates P(Y | X)

Discriminative models have several key limitations

Cannot model P(X), i.e. the probability of seeing a certain image
Thus, can’t sample from P(X), i.e. can’t generate new images
Generative models (in general) cope with all of above

Can model P(X)

Can generate new images



What GANs can do

Ground Truth Adversarial

Lotter, William, Gabriel Kreiman, and David Cox. "Unsupervised learning of visual structure using predictive generative networks." arXiv preprint arXiv:1511.06380 (2015).



GANSs In action

Which one is Computer generated?

Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generative adversarial network." arXiv preprint arXiv:1609.04802 (2016).
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Adversarial Training

Generator: generate fake samples, tries to fool the
Discriminator

Discriminator: tries to distinguish between real and fake
samples

Train them against each other
Repeat this and we get better Generator and Discriminator



GAN’s Architecture

Differentiable module
Realworld ———+{ Sample

images D Real D(x)
Diseriminat O =
G iscriminator - - 8
Zz . )
G(2)

Fake D(G(Z))

Generator Sample

k/ Differentiable module

e Zissome random noise (Gaussian/Uniform).
e Z can be thought as the latent representation of the image.

Latent random variable
OO0

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc- 2016



Latent random variable

Training Discriminator

Realworld ——
images

Real

\ 4
\ 4

O
SSO

Discriminator ’

\4

OO0

Fake

y

Generator

Backprop error to

update discriminator
weights

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



Latent random variable

Training Generator

\ 4

OO0

Generator

y

Discriminator

Sample

Real

O
SSO07

Fake

<

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

Backprop error to
update generator
weights



Diffusion models intro

* Recent superior image generators,
* E.g., DALL-E is prompt based

* "a bowl of soup that is a portal
to another dimension as digital art".




ldea of diffusion models

generate data similar to the data on which they are trained

destroy training data through the successive addition of
Gaussian noise

then learning to recover the data by reversing this noising
process.

After training, generate data by passing randomly sampled
noise through the learned denoising process.
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Diffusion models 1/2

* A diffusion model maps to the latent space using a fixed
Markov chain. This chain gradually adds noise to the data in
order to obtain the approximate posterior.

Q(Xt|Xt—1)
O 0Oz — @

— —
L B -

ol
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Diffusion models 2/2

* A diffusion model is trained to reverse the process

Poxtllxt
@H %@ @H H

‘-_—"
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Sources

* lan Goodfellow and Yoshua Bengio and Aaron Courville: Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org

e PyTorch
* HuggingFace library

 TensorFlow
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Deep learnig

ILSVRC top-5 error rate
on ImageNet
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Classifier Input Classifier Output
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Failures on out-
of-distribution
examples

Michael A. Alcorn, Qi Li, Zhitao Gong,
Chengfei Wang, Long Mai, Wei-Shinn
Ku, Anh Nguyen (2018):

Strike (with) a Pose: Neural Networks
Are Easily Fooled by Strange Poses of
Familiar Objects. arXiv:1811.11553
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University of Ljubljana, Faculty of Computer and Information Science

Nafural language
processing

Prof Dr Marko Robnik-Sikonja
Intelligent Systems, Edition 2024
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» ynderstanding language and intelligence
» fext preprocessing and linguistic analysis

» components of modern NLP
» text representations
= information retrieval
= similarity of words and documents
» |anguage and graphs
= |arge language models
» practical use of NLP:
= senfiment analysis,
» paper recommendations
= summarization



Understanding
language

» A grand challenge of (not only¢) artificial intelligence

Who can understand mee
Myself | am lost

Searching but cannot see
Hoping no matter cost
Am | free?

Or universally bossed?

= Noft just poeftry, what about instructions, user manuals,
newspaper articles, seminary works, internet forums,
twits, legal documents, i.e. license agreements, efc.



An example: rules

Article 18 of FRI Study Rules and Regulations

Taking exams at an earlier date may be allowed on request
of the student by the Vice-Dean of Academic Affairs with
the course convener's consent in case of mitigating
circumstances (leaving for study or placement abroad,
hospitalization at the fime of the exam period, giving birth,
participation at a professional or cultural event or @
professional sports competition, etc.), and if the applicant's
study achievements in previous study years are deemed
satisfactory for such an authorization to be appropriate.



Understanding NL by computers

» Understanding words, syntax, semantics, context,
writer's intentions, knowledge, background,
assumptions, bias ...

» Doesn’'t seem that LLM do it, though they generate
excellent text output

» Ambiguity in language
= Newspaper headlines - infentional ambiguity :)
= Juvenile court to try shooting defendant
= Kids make nutritious snacks

= Miners refuse 1o work after death

= Doctor on Trump's health: No heart, cognitive issues



Ambiguity
®» | made her duck.

» Possible interpretations:
= | cooked waterfowl for her.
= | cooked waterfowl belonging to her.
» | created the (plastere) duck she owns.
» | caused her to quickly lower her head or body.

= | waved my magic wand and turned her into
undifferentiated waterfowl.

= Spoken ambiguity

» cye, maid



Disambiguation in syntax and
semantics

® N syntax
= The girl told the story cried.
= John went to the bank.
= Pyt the box on the table in the kitchen.
= Bring your old car seat to be recycled.

» Search engine queries: natural language processing,
jaguar, Paris,

» POS fagging, word sense disambiguation



Understanding language as
(arfificial) intelligence test

» The system understanding natural language on
human level should contain a large porfion of
human knowledge and would achieve the most
iImportant goals of arfificial intelligence. Its response
would be indistinguishable from human’s.



Turing test

D Machine Z
i?” ;
FPerson X
Person A

= Turing test, Loebner prize, CYC, ELISA, ALLICA, chatterbof,
VIDA, TIA, Siri (knowledge recognition, context detection,
web service recommendation)

» Seems that LLMs can pass it, are they intelligent?
» The question: is mimicking human skills sufficient?




EEEEEEEE
E

E
EEEEE
E

z f A
L
A
E L | Z D)
/ \ ELIZA > HI, T'M ELIZA. WHAT DO YOU WANT TO TALK ABOUT ?

AMIT > CAN I TALK ABOUT MY PROBLEM 7
ELIZA > SURE !

AMIT > DUE TO ON GOING EXAMS IM COLLEGE, I HAVE A LOT OF STRESS.
ELIZA > PLEASE RELAX A LITTLE. SLEEP WELL.

AMIT > THANKS FOR YOUR ADVICE.

ELIZA > NO MENTIONM.

AMIT > BYE

ELIZA > BYE AND KEEP IN TOUCH...

» ELIZA (Weizenbaum, 1966)
» |imited conversation (Rogerian psyhiatrist)

User: You are like my father in some ways.

ELIZA: What resemblance do you see?

User: You are not very aggressive but | think you don't want
me to notice that.

ELIZA: What makes you think | am not aggressivee

User: You don't argue with me.

ELIZA: Why do you think | don't argue with you?

User: You are afraid of me.

ELIZA: Does it please you to believe | am afraid of you?



GPT-3 regressive language model
as a chatbox

» the example is cherry-picked

Q: What is your favorite animal?
A: My favorite animal is a dog.

Q: Why?
A: Because dogs are loyal and friendly.

Q: What are two reasons that a dog might be in a bad mood?

A: Two reasons that a dog might be in a bad mood are if it is hungry or if it is hot.

Q: How many eyes does a giraffe have?
A: A giraffe has two eyes.

Q: How many legs does a frog have?
A: A frog has four legs.

Q: Are there any animals with three legs?
A: No, there are no animals with three legs.

Q: Why don't animals have three legs?
A: Animals don't have three legs because they would fall over.



Where Is NLP foday®e

= qctive research area with many commercial applications

large language models are used everywhere

automatic reply engines

machine translation

text summarization

question answering

speech recognition and synthesis

language generation

intferface to databases

intelligent search and information extraction

sentiment detection

named entity recognition and linking

categorization and classification of documents, messages, twits, etc.
cross-lingual approaches

multi modal approaches (text + images, text + video)

attempt to get to artificial general intelligence (AGI) through “foundation models”
many (open-source) tools and language resource

prevalence of deep neural network approaches (i.e. tfransformers)



Recommended literature

» Jurafsky, Daniel and James Martin (2024): Speech and
Language Processing, 3rd edition in progress, almost all
parts are available at authors' webpages
hitps://web.stanford.edu/~jurafsky/slp3/

» Steven Bird, Ewan Klein, and Edward Loper. Natural
Language Processing with Python. O’'Reilly, 2009

» g free book accompanying NLTK library, regularly updated
» Pyfhon 3, hifp://www.nltk.org/book/

= Coursera
= several courses, e.g., Stanford NLP with DNN




Historically two approaches

= symbolical

»  Good Old-Fashioned Al
®» empirical

= Statistical, text corpora

= Merging both worlds: injecting symbolical
knowledge (e.g., propositional logic) intfo LLMs



How It all started?

= micro worlds
» example: SHRDLU, world of simple geometric
objects
= What is sitting on the red block?
= What shape is the blue block on the table?
» Place the green pyramid on the red brick.
®» |s there ared block? Pick it up.
= What color is the block on the blue brick?e Shape?



Micro world: block world,
SHRDLU (Winograd, 1972)

pi[San 2




Linguistic analysis 1/2

Linguistic analysis contains several tasks: recognifion of
sounds, letters, word formation, syntactic parsing,
recognizing semantic, emotions. Phases:

» Prosody - the patterns of stress and intonation in a
language (rhythm and intfonation)

®» Phonology - systems of sounds and relationships
among the speech sounds that constitute the
fundamental components of a language

= Morphology - the admissible arrangement of sounds
in words; how to form words, prefixes and suffixes ...

» Syntax - the arrangement of words and phrases 1o
create well-formed sentences in a language



Linguistic analysis 2/2

= Semantics - the meaning of a word, phrase,
sentence, or text

» Pragmatics - language in use and the contexis in
which it is used, including such matters as deixis
(words whose meaning changes with context, e.g., |
he, here, there, soon), taking turns in conversation,

text organization, presupposition, and implicature

Can you pass me the salte Yes, | can.

» Knowing the world: knowledge of physical world,
humans, society, infentions in communications ...

= |imits of linguistic analysis, levels are dependent



Classical approach to text processing

® fext preprocessing

® |. phase: syntactic analysis

» 7. phase: semantic interpretation
» 3. phase: use of world knowledge

In the neural approach, the preprocessing remains (but
is simpler) the other three phases are merged into DNN



Basic tools for text preprocessing

®» document - paragraphs - sentences - words
(= (subword) tokens)

= |n linguistic analysis also
= words and sentences €« lemmatization, POS tagging
» sentences € syntactical and grammatical analysis

= named entity recognition,



Words and sentences

®» sentence delimiters — punctuation marks and capitalization are
insufficient

» E.g., remains of 1. Timbuktu from 5¢c BC, were discovered by dr.
Barth.

= |exical analysis (tfokenizer, word segmenter), not just spaces
» 1,999.00€ or 1.999,00€!
= Ravne na Koroskem
» | ebensversicherungsgesellschaft
= Port-au-prince
» Generalstaatsverordnetenversammlungen

» Rules, regular expressions, stafistical models, dictionaries (of
proper names), neural networks, manually segmented datasets



Lemmatization

» |emmatization is the process of grouping together the
different inflected forms of a word so they can be
analyzed as a single item.

= walk is the lemma of ‘'walk’, ‘'walked', 'walks’, 'walking

» | emmatization difficulty is language dependent i.e.,
depends on morphology

= Requires dictionary or lexicon for lookup
go, goes, going, gone, went
jaz, mene, meni, mano

= Ambiguity resolution may be difficult
Meni je vzel z mize (zapestnico).

= Uses rules, dictionaries, neural networks, manually
labelled datasets

» Enlish also uses stemming (reducing inflected or derived
words to their word stem



POS tagging

= assigning the correct part of speech (noun, verb,
etfc.) to words

» helps in recognizing phrases and names

= Use rules, machine learning models, manually
labelled datasets



An example:

» Text analyzer for Slovene, i.e. morphosyntactical
tagging, available aft
hitps://orodja.cjvi.si/oznacevalnik/slv/

Nekega dne sem se napotil v naravo. /e spocetka
me je zulil Cevel], a sem na to povsem pozabil, ko sem
jo zagledal. Bila je prelepa. Povsem nezakrita se je
soncila na trati ob poti. Pritisk se mi je dvignil v visave.
Popoln primerek kmecke lastovke!

= Tags are standardized, for East European languages
iNn Multext-East specification, e.g.,

dne; tag Somer = Samostalnik, obce ime, moski spol,
ednina, rodilnik; lema: dan

a unifying attempt: universal dependencies (UD): cross-
linguistically consistent treebank annotation for many
languages



CLASSLA-Stanza pipeline output

ID Oblika Lema Oznaka Bes. vrsta Oblikoskladenjske Bes. Oblikoskladenjske lastnosti UD Nadrejena Skladenjska Nadrejena Skladenjska Udeleze
Jos Jos lastnosti JOS vrsta pojavnica relacijaUD  pojavnica relacija JOS vloga
ubD ubD Jos

# paragraph 1
# sent_id 1.1
# text = Nekega dne sem se napotil v naravo.

1 Nekega nek Pi-msg Pronoun Type=indefinite DET Case=Gen|Gender=Masc|Number=Sing|PronType=Ind 2 det 2 Atr
Gender=masculine
Number=singular
Case=genitive

2 dne dan Ncmsg Noun Type=common NOUN  Case=Gen|Gender=Masc|Number=Sing 5 obl 5 AdvO TIME
Gender=masculine
Number=singular
Case=genitive

3 sem biti Va-ris-n Verb Type=auxiliary AUX Mood=Ind|Number=Sing|Person=1|Polarity=Pos|Tense=Pres|VerbForm=Fin 5 aux 5 PPart
VForm=present
Person=first
Number=singular
Negative=no

4  se se PX-===== y Pronoun Type=reflexive PRON  PronType=Prs|Reflex=Yes|Variant=Short 5 expl 5 PPart
Clitic=yes
5 npapotil napotiti Vmep- Verb Type=main VERB Aspect=Perf|Gender=Masc|Number=Sing|VerbForm=Part 0 root 0 Root
sm Aspect=perfective

VForm=participle
Number=singular
Gender=masculine

6 v v Sa Adposition ~ Case=accusative ADP Case=Acc 7 case 7 Atr

7 naravo narava Ncfsa Noun Type=common NOUN  Case=Acc|Gender=Fem|Number=Sing 5 obl 5 AdvO GOAL
Gender=feminine
Number=singular

Case=accusative

8 . . z Punctuation PUNCT 5 punct 0 Root




= Nekega dne sem se napotfil v naravo. /e spocetka
me je zulil Cevel|, a sem na fo povsem pozabil, ko sem
jo zagledal. Bila je prelepa. Povsem nezakrita se je
soncila na trati ob poti. Pritisk se mi je dvignil v visave.
Popoln primerek kmecke lastovke!

beseda | Nekega dne sem se napotil v naravo . Ze spocCetka me je
1| lema nek dan  biti se napotiti v narava Ze spocetka jaz biti
oznaka | Zn-mer Somer Gp-spe-n Zp------ k Ggdd-em Dt Sozet .L Rsn Zop-et--k Gp-ste-n

beseda | Zulil Cevelj ,a sem na to povsem pozabil , ko sem jo zagledal
2| lema Zuliti Cevelj a biti na ta povsem pozabiti ko biti on zagledati
oznaka | Ggnd-em Somei , Vp Gp-spe-n Dt Zk-set Rsn Ggdd-em , Vd Gp-spe-n Zotzet--k Ggdd-em

beseda |. Bila je prelepa . Povsem nezakrita se je sonCila na ftrati
3|lema biti biti prelep povsem nezakrit se biti soncCiti na trata
oznaka | . Gp-d-ez Gp-ste-n Ppnzei . Rsn Ppnzei Zp----- k Gp-ste-n Ggvd-ez Dm Sozem

beseda |ob poti . Pritisk se mi je dvignil v viSave . Popoln
4|lema ob pot pritisk se jaz biti dvigniti v viSava popoln
oznaka | Dm Sozem . Somei Zp------ k Zop-ed--k Gp-ste-n Ggdd-em Dt Sozmt . Ppnmein

beseda | primerek kmecke lastovke !
5|lema primerek kmecki lastovka
oznaka | Somei Ppnzer Sozer !




TEI-XML format

<TEI xmlns="http://www.tei-c.org/ns/1.0">

<text>

<body>

<p>

<s>

<w msd="Zn-mer" lemma="nek">Nekega</w>
<S/>

<w msd="Somer" lemma="dan">dne</w>

<S/>

<w msd="Gp-spe-n" lemma="biti">sem</w>
<S/>

<w msd="Zp------ k" lemma="se">se</w>
<S/>

<w msd="Ggdd-em" lemma="napotiti">napotil</w>
<S/>

<w msd="Dt" lemma="v">v</w>

<S/>

<w msd="Sozet" lemma="narava'">naravo</w>
<c>.</c>

<S/>

</s>

</p>
</body>

</text>
</TEI>



MSD tags

= Multext-East
specification

dne; tag Somer =
Samostalnik, obCe ime,
moski spol, ednina,

rodilnik; lema: dan

Platribut vrednost kodaatribut |[vredmost |koda
0|glagol G |Verb V
Ipvrsta  |glavni [4 Type  |main m
pomoini [p auxiliary  |a
2 vid dovrsmi  |d  |Aspect |perfective |e
nedovréni |n imperfective|p
dvovidski [v biaspectual |b
3|oblika |nedolocnikin VFEorm |infinitrve il
namenilnik m supine u
delermk |d participle  |p
sedanjik  |[s present T
prihodnijik [p future f
pogojnik |g conditional |c
velelnik v imperative |m
4loseba |prva p  |[Person [(fust 1
druga d second 2
tretja t third 3
5|stevilo  |ednina e Number [singular 5
mnozina |m phural p
dvojina  |d dual d
6|spol moski m |Gender |masculine |m
zenski z feminine  [f
srednji s neuter n
7 |nikalnostinezanilcani [n Negativelno n
zanikam  |d ves bj




POS tagging in English

» Nhiip://nipdotnet.com/Services/Tagger.aspx

= Rainer Maria Rilkke, 1903
In Letters to a Young Poet

...l would like to beg you dear Sir, as well as | can, to have
patience with everything unresolved in your heart and to try
fo love the questions themselves as if they were locked
rooms or books written in a very foreign language. Don't
search for the answers, which could not be given to you
now, because you would not be able to live them. And the
point is o live everything. Live the questions now. Perhaps
then, someday far in the future, you will gradually, without
even nofticing it, live your way intfo the answer,




POS tagger output

|/PRP would/MD like/VB to/TO beg/VB you/PRP
dear/JJ Sir/NNP ./, as/RB well/RB as/IN |/PRP can/MD ,/,
to/IN have/VBP patience/NN with/IN everything/NN
unresolved/JJ in/IN your/PRP$ heart/NN and/CC to/TO
try/VB to/TO love/VB the/DT questions/NNS
themselves/PRP as/RB if/IN they/PRP were/VBD
locked/VBN rooms/NNS or/CC books/NNS written/VBN
iNn/IN a/DT very/RB foreign/JJ language/NN /.



Named entity recognition (NER)

» NATO Secretary-General Jens Stoltenberg is
expected to travel to Washington, D.C. to meet with
U.S. leaders.

®» [ORG NATQO] Secretary-General [PER Jens
Stoltenberg] is expected to travel to [LOC
Washington, D.C.] to meet with [LOC U.S.] leaders.

= Named entity linking (NEL) also named entity
disambiguation - linking fo a unique identifier, e.g.
wikification
jaguar, Paris, London, Dunqj



Bassic language resources: corpora

Statistical natural language processing list of resources
http://nip.stanford.edu/links/statnlp.html

Opus http://opus.nlpl.eu/ multilingual parallel corpora, e.g., DGT
JRC-Acqui 3.0, Documents of the EU in 22 languages

Slovene language corpora GigaFida, ccGigaFida, KRES,
ccKres, GOS, Artur, JANES, KAS, Trendi

The main Slovene language resources

®» http://www.clarin.si

» https://github.com/clarinsi

®» hittp://www.cjvt.si/

» https://www.slovenscina.eu/
WordNet, SIoWNet, sentiWordNet, ...
Thesaurus https://viri.cjvt.si/sopomenke/s|v/
LLMs: on HuggingFace cjvt, e.g., SIoBERTa and GaM$S




VWoralNerT Is d aarapndase composed Of synseis:

synonyms,
hypernyms
hyponyms,
meronymes,
holonyms,
efc.

Word to search for: |mercy Search WordNet

Display Options: |[Se|ect option to change) V| Change

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence”

Noun

¢ 5. (n) clemency, mercifulness, mercy (leniency and compassion shown toward
offenders by a person or agency charged with administering justice) "he threw
himself on the mercy of the court”
e 5. (n) mercifulness, mercy (a disposition to be kind and forgiving) “in those days a
wife had to depend on the mercifulness of her husband"
¢ 5. (n) mercifulness, mercy (the feeling that motivates compassion)
o direct hyponym ! full hyponym
¢ 5. (n) forgiveness (compassionate feelings that support a willingness to
forgive)
o direct hypernym [ inherited hypernym | sister term
¢ 5. (n) compassion, compassionateness (a deep awareness of and
sympathy for another's suffering)
o derivationally related form
e W: (ad)) merciful [Related to: mercifulness] (showing or giving mercy)
"sought merciful treatment for the captives” "a merciful god”
(n) mercy (something for which to be thankful) "it was a mercy we got out alive"
(n) mercy (alleviation of distress; showing great kindness toward the distressed)
“distributing food and clothing to the flood victims was an act of mercy”

¢ S
* S



Popular NLP applications

document retrieval

information extraction

automatic speech recognition and generation

text classification

automatic summarization

question answering

sentiment analysis, emotion detection, stance detection
machine translation,

language generation

comment filtering, hate speech detection, fake news detection
topic analysis

grammar tools

many more



Document retrieval

» Historical: keywords
= Now: whole text search
= Organize a database, indexing, search algorithms

= nput: a query (of questionable quality, ambiguity,
answer quality)



Document indexing

» Collect all words from all documents, use
lemmatization

» The inverted file data structure

» For each word keep
= Number of appearing documents
= Overall number of appearances

» For each document
= Number of appearances
= | ocation



Token

DocCnt FreqCnt Head

ABANDON

28

51

.\q
ABIL 32 37 “
ABSENC 135 185
ABSTRACT | 7 10

POSTING

DocNo Freq Word Position

67 2 279 283

424 1 24

1376 7 137 189 481...
206 170 e
4819 42632




Full text search engine

= Most popular: Apache Lucene/Solr

» full-text search, hit highlighting, real-time indexing,
dynamic clustering, database integration, NoSQL
features, rich document (e.g., Word, PDF) handling.

» distributed search and index replication, scalability
and fault tolerance.



Search with logical operators

= AND, OR, NOT

= jaguar AND car
jaguar NOT animal

» Some system support neighborhood search (e.g.,
NEAR) and stemming (!)
paris! NEAR(3) fr!
president NEAR(10) bush

= |ibraries, concordancers
» E.g-, for Slovene: https://vir.cjvi.si/aigafida/




Logical operator search is outdated

= | arge number of results

» | arge specialized incomprehensible queries
= Synonyms

» Sorting of results

= No partial matching

= No weighting of query terms



Ranking based search

» Web search
» | ess frequent ferms are more informative
= NL input - stop words, lemmatization

» Vector based representation of documents and
queries (bag-of-words or dense embeddings)



Sparse vector representation:
bag-of-words

» An elephantis a mammal. Mammals are animals.
Humans are mammals, too. Elephants and humans
live in Africa.

“H — W'W“

? dimensional vector (1,1,3,2,2,1,1,3,1)

In reality this is sparse vector of dimension |V |
(vocabulary size in order of 10,000 dimensions)

Similarity between documents and queries in vector
space.



Vectors and documents

» O word occurs in several documents
» both words and documents are vectors
®» aon example: Shakespeare

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown S 117 0 0

®» ferm-document matrix, dimension |V | x |D/|
® g sparse matrix
» word embedding



Vector based similarity

» c.g., In two dimensional space

40 —
Henry V [5,15]
o 157
S
& 10 7 Julius Caesar /1,8
> 7 As You Like It /1,37]  Twelfth Night /1,56/

— —>
! I I I I | l I I I

5 10 15 20 25 30 35 40 45 50 55 60

fool

» the difference between dramas and comedies



Document similarity

= Assume orthogonal dimensions
» Cosine similarity
= Dot (scalar) product of vectors

A-B
AlB

CosS(®) =



Importance of words

= Frequencies of words in particular document and
overdll

®» inverse document frequency idf
= N = number of documents in collection

» n, =number of documents with word b
)

1df, =log(
nb



Weighting dimensions (words)

= Weight of word b in document d

W, ¢ :tfb,d X idfb,d

tf, 4 = frequency of term b in document d

» called TF-IDF weighting (an improvement over bag-
of-words)



Weighted similarity

®» Between query and document

2

sim(qg,d) =

\/Zwbd \/Zqu

= Ranking by the decreasing similarity



Performance measures for search

» Statistical measures

» Subjective measures

= Precision, recall

» A contingency table analysis of precision and

recall
Relevant Non-relevant
Retrieved a b a+b=m
Not retrieved C d c+d=N-m

at+c=n b+d=N-n a+b+c+d=N




Precision and recall

» N = number of documents in collection
= n = number of important documents for given query g
» Search returns m documents including a relevant ones

®» Precision P=a/m
proportion of relevant document in the obtained ones

» Recall R=a/n
proportion of obtained relevant documents

» Precision recall graphs



An example: low precision, low
recall

Returned Results

Not Returned Results

® Relevant Results

® Irrelevant Results



Precision-recall graphs

=
o

=
n

Precision

=
i

=
M

=
=

.0 0.2 0.4 0.6 0.
Recall



F-meaqsure

» combine both P and R

2
Fﬁ:(1+'f) i Rfor,6’>0
L°P+R
|:1:2-P-R
P+R

» Weighted precision and recall
» =] weighted harmonic mean
» Also used =2 or f=0.5



Ranking measures

precision@k

= proportion of relevant document in the first k obtained ones

recall@k
= proportion of relevant documents in the k obtained among all relevant

F, @k
mean reciprocal rank

MRR = ! QE !
ey 1ranki
=

= over Q queries,
= considers only the rank of the best answer



Why dense textual embeddings?

Best machine learning models for text, i.e. deep neural
networks, require numerical input.

Simple representations like 1-hot-encoding and bag-of-
words do not preserve semantic similarity.

We need dense vector represenation for text elements.

banana [@@@@@.@@(‘D@@@J
mango | (0) () (@) (a) (o) (o) (o) (o) (o) @ o) (o)




Dense vector embeddings

» advantages compared to sparse embeddings:
® |ess dimensions, less space
= cqasier input for ML methods
= potential generalization and noise reduction

= potentially captures synonymy, e.g., road and highway are
different dimensions in BOW

» fhe most popular approaches

» maftrix based transformations to reduce dimensionality (SVD in
LSA)

» neural embeddings (word2vec, Glove)
» explicit contextual neural embeddings (ELMo, BERT)
= only use an implicit representation in LLM



Meaning focused on similarity

» Fach word is a vector

» Similar words are "nearby in space”

not good

bad
‘ dislike .
S ) )
incredibly bad
are worse
you
IS
very good incredibly good
amazing fantastic
terrific niice wonderful

good



Distributional semantics

You shall know a word
by the company it keeps

Firth, J. R. (1957). A synopsis of linguistic theory 1930-1955. In
Studies in Linguistic Analysis, p. 11. Blackwell, Oxford.

"The meaning of a word is its

use in the language”
Ludwig Wittgenstein, Pl #43




Neural embeddings

» neural network is trained to predict the context of
words (input: word, output: context of neighboring
words)



word2vec method

Train a classifier on a binary prediction task:
Is word w likely to show up near a given word, e.g., "apricof''e

We don’'t actually care about this fask

But we'll take the learned classifier weights as the word
embeddings

Words near apricot acts as ‘correct answers’ to the question
“Is word w likely to show up near apricote”

No need for hand-labeled supervision



word2vec (skip-gram) training dato

Training sentence:
tablespoon of apricot jam ¢
C] c2 target c3 c4
Asssume context words are those in +/- 2 word window

Produce the following input-outputs for positive instances:
(apricot, tablespoon), (apricot, of), (apricot, jam), (apricot, a)

Get negative training examples randomly

Train a neural network to predict the probability of a co-
occurring word

61



Neural network based embedding

Input layer Projection layer Oll_tp“.t. lﬁayer
, probabilities of
1-hot mput vector embedding for Wy context words
erTT—— oy
|
X.z ? : vy,
'. W = |
M Vixd S Caxvi  joly, Wirl
5 _‘_;, - :
e - I Vi
I X V| Ixd 1 X V|




Relational similarity

WOMAN

/ KR QUEENS
MAN /

UNCLE KINGS \
QUEEN \ QUEEN

KING KING

vector(‘king’) - vector(‘man’) + vector(‘woman’) = vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) = vector('‘Rome’)
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Embeddings can help study word
history

® Train embeddings on old books fo study
changes in word meaning!!



Diachronic word embeddings for
studying language change

Word vectors 1990
Word vectors for 1920 “dog” 1990 word vec or

“dog” 1920 word r




Visualizihg changes

Project 300 dimensions down into 2

a . 9ay (1900s)

flaunting sweet
tasteful cheerful

pleasant

frolicsor
witty ¥ gay (1950s)
bright
gays Isexual
gay (1990s) homosexual
leshian

spread

broadcast (1850s)., e%?]”

SOWS
scatter
broadcast (1900s)

newspapers

circulated

television

radio
hhc broadcast (1990s)

C solemn
awful (1850s)

mayjestic
awe

dread yensive

gloomy

horrible

appalliwg terrible
awful (1900s) ,
wonderful
awful (1990s)
awfullYerd

~30 million books, 1850-1990, Google Books data



The evolution of sentiment words

Negative words change faster than positive words
2 -

I 4 Sentiment of terrific

_2

J

1900 1940 1980



Embeddings reflect cultural bias

» Ask “Paris : France :: Tokyo : x"
» x = Japan
» Ask “father : doctor :: mother : x”
®» X = nurse
= Ask “man : computer programmer :: woman : x"

» X = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai.
"Man is to computer programmer as woman is to homemakere debiasing word embeddings.”
In Advances in Neural Information Processing Systems, pp. 4349-4357. 2016.



Change in linguistic framing 1910-1990

Change in association of Chinese names with adjectives framed as
"othering" (barbaric, monstrous, bizarre)

0.09 =@— Avg. Asian Bias

Avg. Asian Bias
s =2 o2 9o 9
[e) ) ) (e} ]
[ Ut (@) ~ o]

<
)
&

0.02

0.01
1910 1920 1930 1940 1950 1960 1970 1980 1990

Year

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the
National Academy of Sciences, 115(16), E3635—-E3644



Contextual embeddings /
Large language models

* word2vec produces the same vector for a word like
bank irrespective of its meaning and context

* recent embeddings take the context into account
* already established as a standard

* e.g., BERT for contextual word embeddings



e LOorge language models (LLMs)

= prefrained neural large language models

= frained on large text corpora to capture
relations in language

»finetyned 1o specific tasks

= many are publicly available

= dn HuggingFace




Transformer architecture of NNs

» currently the most successful DNN

® non-recurrent

» architecturally it is an encoder-decoder model
= fixed input length

= can be parallelized

» adapted for GPU (TPU) processing

» based on extreme use of attention

» hitps://github.com/dair-ai/Transtormers-Recipe




Transformer is an encoder-decoder model

am a student

4
(~ :
ENCODER DECODER
\
) [
-
ENCODER DECODER
\
A 4
p
ENCODER DECODER
.
/) 4
p
ENCODER DECODER
.-
/) [ )
-
ENCODER DECODER
"
A [
-
ENCODER DECODER
.
. A
|
INPUT | Je suis étudiant

on the figure there are 6 encoders and é decoders
(could be some other number)




Transformer
overview

= |nitial task: machine
translation with parallel
COrpus

» Predict each
translated word

» Final cost/loss/error
function is standard
Cross-enfropy error on
top of a softmax
classifier

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., .
L., Gomez, A.N., Kaiser, t. and Polosukhin, I., 2017.
Attention is all you need. In Advances in neural
information processing systems (pp. 5998-6008).
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Transformer: encoder

* two layers
* no weight sharing between different encoders
* self-attention helps to focus on relevant part of input

[ Feed Forward Neural Network ]
3
( Self-Attention ]

77



Transformer: decoder

* the same as encoder but with an additional attention layer in
between, receiving input fom encoder

( )
Feed Forward
t \_ y,
A
( 4 B
Feed Forward Encoder-Decoder Attention
. . Y,
o —_— A
( ( )
Self-Attention Self-Attention
\_ 1‘ \_ f _J

78



Start with embeddings

ENCODER A

4

Feed Forward

\

t
2 [
t

Self-Attention

4

4

)
)

x2 [

suis

xs [

étudiant




Input to transformer

embeddings, e.g., 512 dimensional vectors
(special, we will discuss that later)

fixed length, e.g., max 128 tokens (in modern at
least 8192)

dependencies between inputs are only in the self-
attention layer, no dependencies in feed-forward
layer — good for parallelization

Let us first present the working of the
transformer with an illustration of the prediction



ENCODER #2 k\

ENCODER #1

Encoding

)

r i rz*

A A

(

Feed Forward Feed Forward
Neural Network Neural Network

2 T 2 TTT]
t 1

Self-Attention

4 4

1 I
x: [ x2 [
Thinking Machines

81



Self-attention

As the model processes each word (each position in the input
sequence), self-attention allows it to look at other positions in
the input sequence for clues that can help lead to a better
encoding for this word

“The animal didn't cross the street because it was too tired”

What does “it” in this sentence refer to? Is it referring to the
street or to the animal? It’s a simple question to a human, but
not as simple to an algorithm.

”The animal didn't cross the street because it was too wide”

When the model is processing the word “it”, self-attention
allows it to associate “it” with “animal”.



Illustrating self-attention

e As we are encoding Layer:| 5 §| Attention:| Input - Input  $

the word "it" in

encoder #5 (the top animal: animal_
encoder in the stack), didn_ didn_
part of the attention - -

The The_

. 8 L
mechanism was ey Sih.
focusing on "The the_ the_
Animal", and baked a Street_ street_

. because_ because_
part of its . .
representation into was_ was._
the encoding of "it". too_ too_
tire tire
d d



Self-attention details 1/4

Input

Embedding LI [ [ ] L1 [ [ |
Queries [El:] I:I:I:]
Keys |:|:|:| I:I:D
Values I:El:] I:I:I:]

Multiplying x, by the W2 weight matrix produces q,, the "query" vector associated with that
word. We end up creating a "query", a "key", and a "value" projection of each word in the input

sentence.
84



Input

Embedding
Queries
Keys
Values

Score

Details 2/4: scoring

Thinking
X1
a1
k
V1
qi e ki=

Machines

X2

V2

85



Details 3/4: normalization of scores

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 ( d;. )

Softmax

86



Details 4/4: self-attention output

Input

Embedding HEEN L LT ]
Queries q1 |:|:|:| q2 l:ljj
Keys D:I:’ Djj
Values Dj] D:Ij
Score qr e = qi ® =

Divide by 8 ( Vdj )
Softmax

Softmax

X [T 1]

Sum [|:|:| Djj




Vs
illustration for Output Vector 00 -0 - 00
the third input ‘

>

Weight and Sum

value vectors (I;_l . l;_l) (L}_:l * %I) (CJ

=

Softmax
Qg5 %:I a] rlj

Key/QLlJery <
Comparisons
> @ =«
Generate 5 m <, = GI; @ @
key, query value M m
vectors
..oo..o.. ..oo.o... moo’oo.!)
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Matrix calculation of self-attention 1/2

Every row in the X matrix
corresponds to a word in the

input sentence. . B
The embedding vector x (512) is
larger then the g/k/v vectors (64)

X —




Matrix calculation of self-attention 2/2

* final calculation

softmax( )




ENCODER #2 k\

ENCODER #1

Encoding

)

r i rz*

A A

(

Feed Forward Feed Forward
Neural Network Neural Network

2 T 2 TTT]
t 1

Self-Attention

4 4

1 I
x: [ x2 [
Thinking Machines
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Example

ATTENTION HEAD #0

: two attention heads

ATTENTION HEAD #1

Q1

W@

92



Example: 8 att. heads

Calculating attention separately in
eight different attention heads

v

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

* What to do with 8 Z matrices, the feed-forward layer is expecting a single matrix
(one vector for each word). We need to condense all attention heads into one

matrix.
93



Condensation of attention heads

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

X

3) The result would be the © matrix that captures information
from all the attention heads. We can send this forward to the FFNN

T

94



Computing multi-head attention

MultiHead(Q, K, V) = Concat(heady, ..., heady, )W
where head; = Attention(QWiQ, KW, VW)

t

Linear

Concat

~

Scaled Dot-Product
Attention

b

tl

tl

tl

L

Linear

)

Linear

)

Linear

.




Summary of self-attention

1) This is our 2) We embed
input sentence* each word*

Thinking

Machines

* In all encoders other than #0,
we don’t need embedding.
We start directly with the output

of the encoder right below this one

3) Split into 8 heads.
We multiply X or
with weight matrices

W@
1 WK

W@
LW, K
W4V

W-Q
L \W-K
w-,v

0

-

Q

Q4

4) Calculate attention
using the resulting
Q/K/V matrices

0
Ko

Vo

K1
Vi

Q7

K7

FF

V7

5) Concatenate the resulting ~ matrices,
then multiply with weight matrix to
produce the output of the layer

96



lllustration of self-attention: 1 head

encoder #5 (the top Layer:
encoder in the stack)

As we encode the word
"it", one attention
head is focusing most
on "the animal”, while
another is focusing on
"tired" -- in a sense,
the model's
representation of the
word "it" bakes in
some of the
representation of both
"animal" and "tired".

5 §  Attention:

street_
because_
it_

was_
too_

tire

Input - Input

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_

was_
too_

tire



lllustration of self-attention: all heads

all the

attention
heads in one
picture are
harder to
interpret

Layer:

5 §  Attention:

Input - Input

E
v

The_
animal_
didn_

street_
because_
it_

was

too_

tire



Adding position encoding

(

(

ENCODER #1 DECODER #1
ENCODER #0 DECODER #0

>

N

!

EMBEDDING
WITH TIME
SIGNAL

POSITIONAL
ENCODING

EMBEDDINGS

INPUT

]

te (]

2 [

SUIS

étudiant
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Example: encoding position

* the values of positional encoding vectors
follow a specific pattern.

POSITIONAL 1 1 0.84 [kl 0.54 | 1 A 0.0002 | -0.42 1
ENCODING
+ + +
EMBEDDINGS X1 X2 X3
INPUT J L= S .,”f:\ f'i."'.-\ J‘d[

100



Example of positional encoding

i
o
i




Another positional encoding

PE (pos,2i) = sin(pos/ 100002%/ dmodel)
PE (p0s,2i+1) = cos(pos/ 100002%%/ dmodel)

nn




Encoder blocks

Each block has two “sublayers”
— Multihead attention

— 2-layer feed-forward neural network
(with RelLU)

Each of these two steps also has a residual
(short-circuit) connection and LayerNorm,
l.e.:

— LayerNorm(x + Sublayer(x))

Add & Norm

|

Feed
Forward

|

Add & Norm

Multi-Head

Attention

A

4

’

J




Architecture with residual connection

ENCODER #1

— top level view

( Add & Normalize \
:

&,
|
|
|
]
|
\s
LY T E R R R R R R R R R N RN
POSITIONAL
ENCODING

X1 X2

Thinking Machines

104



Architecture with residual connection

— example
3 4
(.,( Add & Normalize ) \
: 4 i
( Feed Forward ) ( Feed Forward )
""" 5_1'_"*""""""""ZZ_"*
4 4
w| ,» LayerNorm( + )
E 1
o + [
2| 3 EREE EEEE
E ( Self-Attention )
ol msam
POSITIONAL é é
ENCODING
x+ BT x> EEE

Thinking Machines 105



ENCODER #2

ENCODER #1

Example: 2 stacked transformer

Add & Normalize

: §

:. ( Feed Forward ) ( Feed Forward
P—— Y 4

,->( Add & Normalize

( Self-Attention

POSITIONAL
ENCODING
X1 | X2 | | |

Thinking Machines

DECODER #1

Softmax

L

Linear

4

: ... DECODER #2

Add & Normalize

Ay e 'y
,*( Add & Normalize

, ) )

"':'*( Encoder-Decoder Attention

p P —  YCTIIII I I LTI IEIIIY )
,.>( Add & Normalize

; £ t
' ( Self-Attention
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Complete encoder

each encoder block is repeated
several times, e.g., 6 times

[

4 )
f—>| Add & Norm |

Feed
Forward

N Add & Norm
Multi-Head
Attention

A )

\_
\_ Yy,
Positional
Encoding
Input
Embedding

T

Inputs




Decoder

Decoders have the same components as encoders
An encoder starts by processing the input sequence.

The output of the top encoder is transformed into a set of
attention vectors K and V.

These are used by each decoder in its “encoder-decoder
attention” layer which helps the decoder to focus on
appropriate places in the input sequence.



Encoder-decoder in action 1/2

Decoding time step:(1)2 3 4 5 6 OUTPUT
r N
( Linear + Softmax )
ENCODER ) [ DECODER J
[ 4
ENCODER ( DECODER J
\. J
EMBEDDING
WITH TIME LITT] LT TT] LLTT]
SIGNAL
EMBEDDINGS LLIT] LLLT] LLIT1]
INPUT Je suis  étudiant

After finishing the encoding phase, we begin the decoding phase. Each step in the
decoding phase outputs an element from the output sequence (the English
translation sentence in this case). 109



Encoder-decoder in action 2/2

Decoding time step: 1(2)3 4 5 6 OUTPUT |
4 )
V ( Linear + Softmax )
(1TTT1] (I LT i:f'l'l' HI'I'I' 1‘
{ 3
ENCODERS DECODERS
\ - =
EMBEDDING t t t t
WITH TIME LI T] LT 1] LI T] [(T1T]
SIGNAL
EMBEDDINGS LT (TTT1] LITT] (T 1T]
' 5 i PREVIOUS
INPUT e suis  étudiant
J OUTPUTS

The steps repeat until a special symbol indicating the end of output is generated. The output
of each step is fed to the bottom decoder in the next time step. We add positional encoding
to decoder inputs to indicate the position of each word. 110



Self-attention and encoder-decoder
attention in the decoder

* Inthe decoder, the self-attention layer is only allowed to
attend to itself and earlier positions in the output sequence
(to maintain the autoregressive property).

* This is done by masking future positions (setting them to -inf)
before the softmax step in the self-attention calculation.

* The “Encoder-Decoder Attention” layer works just like
multiheaded self-attention, except it creates its Q (queries)
matrix from the layer below it, and takes the K (keys) and V
(values) matrix from the output of the encoder stack.



Attentions in the decoder

1. Masked decoder self-attention on previously generated

outputs

//\/3

2. Encoder-Decoder Attention, where queries come from
previous decoder layer and keys and values come from output of

the encoder

112



Animated workings of attention in
transformer



One encoder-
decoder block

Output

Probabilities
| Softmax )
| Linear |}
( 4 N
| Add & Norm }e=~
Feed
Forward
r
s ~\ | Add & Norm Je~
L Add & Norm J Multi-Head
Feed Attention
Forward T 77 N x
“ ( J e~
Add & Norm
N x T
~>| Add & Norm J Masked
Multi-Head Multi-Head
Attention Attention
\_ J . _J)
Positional iti
oS O, a D ¢ Posnpnal
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)



Producing the output words

Which word in our vocabulary

. N . _ am
is associated with this index?

Get the index of the cell

with the highest value
(argmax)

log_probs [T

@ 12345 ’ . Vocab_size
( Softmax )
I
logits ||
012345 * - Vvocab_size
( Linear )

Decoder stack output
115



Training the transformer

During training, an untrained model would go through the
exactly the same forward pass. But since we are training it on
a labeled training dataset, we can compare its output with the

actual correct output.

For illustration, let’s assume that our output vocabulary only
contains six words(a, am, i, thanks, student, <eos>)

The input is typically in the order of 10%(e.g., 30 000)

Output Vocabulary

WORD a am | thanks student <eQs>

INDEX 0 1 2 3 4 5



The Loss Function

* evaluates the difference between the true output and the
returned output

* transformer typically uses cross-entropy or Kullback—Leibler
divergence.

* The model output is a probability distribution, the true output
is 1-hot encoded, e.g.,

Untrained Model Output

0.2 0.2 0.1 0.2 0.2 0.1

a am thanks student <eos> 117



Loss evaluation for sequences

* |oss function has to be evaluated for the whole sentence, not
just a single word

* transformers use greedy decoding or beam search

Target Model Outputs Trained Model Outputs
Output Vocabulary: a am I thanks student <eos> Output Vocabulary: a am [ thanks student <eos>
position #1 VKN 1.0 EEOX KRN0 position #1 0.93 0.03 0.01

ezl o0 BEKM 00 00 00 00 ' position #2 SR

position #3 | 1.0 0.0 0.0 0.0 0.0 0.0 FLHICLEERNREN 0.001 0.001 0.001 0.002 0.001

LM 0.001 0.002 0.001 0.02 m 0.01
position #4 K] 0.0 0.0 0.0 1.0 0.0 .

POHICLESE 0.01 0.01 0.001 0.001 0.001 ekl
position #5 JKG 0.0 0.0 0.0 0.0 1.0

a am | thanks student <eos>
a am | thanks student <eos>



Three flavours of fransformers

= cncoder only (BERT)
» encoder-decoder (machine translation, T5)
» decoder only (GPT)



BERT

« combines several tasks
 predicts masked words in a sentence

* also predicts order of sentences: is sentence A followed by
sentfence B or not

- combines several hidden layers of the network

« uses tfransformer neural architecture, only teh encoder part

« uses several fine tuned parameters

- multilingual variant supports 104 languages by training on
Wikipedia

« publicly available

Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-training of deep bidirectional transformers for language
understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp 4171-4186



Many BERT-like embeddings

XLM-R was frained on 2.5 TB of texts in 100 languages

for Slovene: fastText (a variant of word2vec), ELMo, SIOBERTa

triingual BERT — CroSloEngual

on Clarin.si

hundreds of papers investigating BERT-like models in major ML
& NLP conferences

Ulgar, Matej and Marko Robnik-Sikonja. FinEst BERT and CroSloEngual BERT: less is more in multilingual models.
In Proceedings of Text, Speech, and Dialogue, TSD2020, 2020.



Use of BERT

» frain a classifier built on the top layer for

each task that you fine tune for, e.g., Q&A,
NER, inference

» achieves state-of-the-art results for many
tasks

» GLUE and SuperGLUE tasks for NLI

KSP Mask LM Ma% LM \ /('-I MAD Start/End Span\
" *

00—

LeJ)- Clle )] () L) e ) -
| = = o s i
BERT | ety . .' ’ =« BERT
[fen |l & | [Ew [ Eoem ][ & |- [&] [fen | & | [ & [ Eeen ][ & | [&]
—— L LB 5 S~ e -
(o). (). (o) (o)) (). [me)
Masked Sentence A Masked Sentence B

Question Paragraph
* *
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training

Fine-Tuning

122



Sentence classification using BERT -
sentiment, grammatical correctness

[CLS]

m

[CLS]

Tok 1

Tok N

Single Sentence

123



Two sentence classification using BERT-
iInference

Class
Label
Ce )] [ )men L7
Brews) B |- Ey Eiser) ES Ey
N N N N N
-1/_\r iy L L iy
il | 0 0 R
| l
I |
Sentence 1 Sentence 2
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Questions and answers with BERT

Start/End Span

3 EEENES M e
- E, Ey E[SEP] = =
N N\ N /\ /‘\ SN
B L gy
=E - @EE- @

|

l
Question Paragraph
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Sentence tagging with BERT-
NER, POS tagging, SRL

@) B-PER @)
2 & < »
I ERES
BERT
E[CLS] E1 Ez EN
o a8 s . u
[CLS] Tok 1 Tok 2 Tok N

Single Sentence

126



Cross-lingual embeddings

* mostly, embeddings are trained on
monolingual resources

« words of one language form a cloud in
high-dimensional space

* clouds for different .-
languages can be aligned

»WS=Eor
» W.S=W,E

disambiguation
pages

. ..0.%.::. .

o

- .:0 ';‘ .‘. ."%' o © e &O’

- - - .
s # species ‘?
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Cross-lingual model transfer based on
embeddings

 Transfer of tools trained on mono-lingual resources

=i

WELL-RESOURCED LESS-RESOURCED
LANGUAGE LANGUAGE

mostly not used anymore, superseded by multilingual LLMs



vty o/ it Vocabulars in LLMs
Faculty of Computer and
Information Science

« Tokenization depends on the dictionary
« The dictionary is constructed statistically (SentencePiece algorithm)

 Sentence: “Letenje je bilo predmet precej starodavnih zgodb.”

 S|oBERTa:

'_Le', 'tenje’, '_je', '_bilo', ' _predmet’, ' _precej', ' _staroda’, 'vnih', ' _zgodb', '’

* mBERT:

'Let!, '##ten', '##je’, 'je', 'bilo’, 'pred’, '##met’, 'pre’, '##tcej', 'star’, '##toda’, '##tvnih',
'Z', '#itgo', '#itd', '#itb', "

Ul¢ar, M., & Robnik-Sikonja, M. (2021) Training dataset and dictionary sizes matter in BERT models: The case of Baltic
languages. In International Conference on Analysis of Images, Social Networks and Texts (pp. 162-172) e\




i st Multilingual LLMs
nformation Science

Uni
Fac
Iny

|
S
Ty

’:
(4

* Pretrained on multiple languages simultaneously

 multilingual BERT supports 104 languages by
training on Wikipedia

« XLM-R was trained on 2.5 TB of texts

 allow cross-lingual transfer

 often solve the problem of insufficient training
resources for less-resourced languages




Using multilingual models

1§

predsednik je danes najavil ...

tutt
23S

E) 5 -

Pretraining Fine-tuning Classification

Zero-shot transfer and few-shot transfer

- 131



L What LLMs learn?

Faculty of Computer and
Information Science

* We would like to travel to [MASK], ki je najlepsi otok v Mediteranu.

SIoBERTa: ..., Slovenija, |, Koper, Slovenia

CSE-BERT: Hvar, Rab, Cres, Malta, Brac

XLM-R: Mallorca, Tenerife, otok, Ibiza, Zadar

MBERT: Ibiza, Gibraltar, Tenerife, Mediterranean, Madeira

BERT (en): Belgrade, Italy, Serbia, Prague, Sarajevo




Embed all the things!

= Neural networks require numeric input

Embedding shall preserve relations from the original space

» Representation learning is a crucial topic in nowadays
machine learning

= | ots of applications whenever enough data is available to
learn the representation

= |n text, BERT-like models dominate for embeddings

= Similar ideas applied to texts, speech, graphs,
electronic health records, relational data,
time series, etc.
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T5 (Text-To-Text Transfer Transformer) models

[ "translate English to German: That is good."

"Das ist gut."]
course is jumping well."

[ "cola sentence: The

"not acceptable"]
"stsb sentencel: The rhino grazed

on the grass. sentence2: A rhino
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi.."

"six people hospitalized after
a storm in attala county."

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y, Li, W. & Liu, P. J. (2020). Exploring the limits of
transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140), 1-67.
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Number of parameters
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Figure 1: Exponential growth of number of parameters in DL models



Decoder only models

» GPT, GPT-2, GPT-3,
ChatGPT, GPT-4

» | | aMA, LLOMA-2,
LLOMa-3

=» MPT, Falcon
» Mistral and Mixiral
= OPT, Bloom

» Gemma and
Gemini

Output Tokens

I

(1 Decoder Block

( Decoder Block

| Token/Position Embedding

Input Tokens




GPT family

GPT: Generative Pre-trained
Transformers

use only the decoder part of
transformer

pretrained for language
modeling (predicting the next
word given the context)

Potential shortcoming:
unidirectional, does not
incorporate bidirectionality

“What are those?” he said while
looking at my crocs.

probability distribution over vocabulary

softmax

e N
layer norm.
fully connected
layer norm.
masked
multi-head
attention
N J




Transformer as a language model

Next word a hole in the grOUﬂd
1 1 !
Loss [ —Togya | [—Togynote | [ —logyim | [ —I08Umhe | [—10g Yground] = fZLOE
1 ﬂ\ 1 t=1
Softmax over
oy () (ali)  (aln)  Gade) Gl
Transformer
Block(s) [I: ) ]
A

Input
Embeddings

In a hole in the

* Can be computed in parallel 139



Autoregressive generators

* priming the generator with the context

Completion Text

A
o 1 )
ground I there |
|
' i
Sample from Softmax | !
| |
| |
Transformer ! !
Blocks | ] :
Input (@@ <+ 06 +: 009) //’/’W—o CX-15) : @@+ 0 --00 : @@ ++ 0 - 00
Embeddings | i T
|
hole the | ground i there
| /.4 .7
¥ _/ | '\._/‘
—
Prefix Text

e can be used also in summarization, QA and other generative
tasks 140



GPT-2 and GPT-3

* few architectural changes, layer norm now applied to input of
each subblock

 GPT-3 also uses some sparse attention layers
 more data, larger batch sizes (GPT-3 uses batch size of 3.2M)
* the models are scaled:

GPT-2: GPT-3:

48 layers, 25 heads 96 layers, 96 heads
dm =1600,d = 64 dm=12288,d =128
context size = 1024 context size = 2048
~ 1.5B parameters ~ 175B parameters

[1] Radford et al.: Language Models are Unsupervised Multitask Learners, 2019.
[2] Brown et al.; L anguage Models are Few-Shot Learners, 2020.

* see demos at https://transformer.huggingface.co/
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In-context learning

GPT-2 and GPT-3 were the first models where one can ditch
the “pre-train and fine-tune” training paradigm of GPT;

GPT-2 explores unsupervised zero-shot learning, whereas in
GPT-3 the authors expand the idea into in-context learning;

Use text input to condition the model on task description and
some examples with ground truth.

Uses zero-shot learning, one-shot learning, few-shot learning
(as many examples as they can fit into the context, usually 10-
100)

No gradient updates are performed.
A sort of associative lookup



In-context learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description
cheese => prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer example
cheese => prompt

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Figure source: Brown et al.: L anguage Models are
Few-Shot [ earners, 2020.
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- GPT-3 is still a
language model
and can be used
for text generation

-only 12% of
respondents
correctly classified
this as not written
by a human

Title: United Methodists Agree to Historic Split

Subtitle: Those who oppose gay marriage will form their own denomination
Article: After two days of intense debate, the United Methodist Church

has agreed to a historic split - one that is expected to end in the

creation of a new denomination, one that will be "theologically and

socially conservative," according to The Washington Post. The majority of
delegates attending the church’s annual General Conference in May voted to
strengthen a ban on the ordination of LGBTQ clergy and to write new rules
that will "discipline" clergy who officiate at same-sex weddings. But

those who opposed these measures have a new plan: They say they will form a
separate denomination by 2020, calling their church the Christian Methodist
denomination.

The Post notes that the denomination, which claims 12.5 million members, was
in the early 20th century the "largest Protestant denomination in the U.S.,"
but that it has been shrinking in recent decades. The new split will be the
second in the church’s history. The first occurred in 1968, when roughly

10 percent of the denomination left to form the Evangelical United Brethren
Church. The Post notes that the proposed split '"comes at a critical time
for the church, which has been losing members for years," which has been
"pushed toward the brink of a schism over the role of LGBTQ people in the
church." Gay marriage is not the only issue that has divided the church. In
2016, the denomination was split over ordination of transgender clergy, with
the North Pacific regional conference voting to ban them from serving as
clergy, and the South Pacific regional conference voting to allow them.
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RSN H LS e generative language models

* ChatGPT, OpenAl, Nov. 2022
based on GPT-3.5 with additional training for iifisiia
dialogue o

* uses instruction-tuning and RLHF
(reinforcement learning with human feedback)

e demo: https://chat.openai.com/

* huge public impact, possibly disruptive for
writing professions, learning, teaching, scientific
writing

 GPT-4, 2023: even larger, allows longer context,
Image input ‘
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in informatiko

* Reinforcement Learning with Human Feedback

* A problem: Human feedback is not present
during training

* |dea: Train a separate model on human
feedback, this model can generate a reward to
be used during training of LLM

 Three stages:
1. Pretraining a language model (LM),
2. Gathering data and training a reward model, and
3. Fine-tuning the LM with reinforcement learning.

Nathan Lambert, Louis Castricato, Leandro von Werra, Alex Havrilla: "lllustrating Reinforcement Learning from Human Feedback (RLHF)",
Hugqging Face Blog, 2022.




Univerza v Ljubljani
Fakulteta za racunalnisivo
in informatiko

* input: a sequence of text, brompts & Text Dataset Train Language Model
e.g., produced by LM and " Inital Language Model |
optionally improved by
humans

e output: a scalar reward,

A4

representing the human : \ J
preference of the text (e.g., a i 2
rank of the answer) B e ‘
* the reward model could be somm—
an end-to-end LM, or the Human Augmented
model ranks outputs, and the Text (Optional)

ranking is converted to
reward




T
Univerza v Ljubljani
Fakulteta za racunalnisty

in informatiko

Prompts Dataset

e the training dataset are
pairs of prompts and

(human improved) LM
responses, e.g., 50k HH“H
instances ) . Outpte o o
Initial Language Model :i';";r’if:;c:: L
* humans rank the 28 | i ?y f
i ez | L= 2|
responses mstegd of 0 e
producing the direct N

reward as this produces
better calibrated scores




Univerza v Ljubljani
Fakulteta za racunalnisivo
in informatiko

 RL does not change
all parameters, most
of parameters are
frozen

g ™\ 7 Tuned Language )
Initial Language Model Model (RL Policy)

Prompts Dataset

/ @\ Reinforcement Learning
A 4N Update (e.g. PPO)

* the algorithm:
' : (e |——p e
Proximal Policy 33 9205 9e70)
Optimization (PPQO) | |=mee] | | Fowiss) | e

y: a furry mammal y: man'’s best friend > = @OO \g

|

—AxL Dk (7ppo (¥]2) || Thase(y]2))
KL prediction shift penalty




NLP application examples



Sentiment analysis (SA)

» Definition: a computational study of opinions, senfiments,
emotions, and atffitudes expressed in texts fowards an
entity.

» Purpose: detecting public moods, i.e. understanding the
opinions of the general public and consumers on social
events, political movements, company strategies,
marketing campaigns, product preferences efc.

» Part of Affective Computing (emotion, mood, personality
traits, interpersonal stance, attitude)

= Can be target-based or general



SA: getting and preprocessing dato

®» Frequent data sources:

» Twitter-X, forum comments, product review sites, company’s
Facebook pages

= Data cleaning

= quality assessment, annotator (self-) agreement

= preprocessing: tokenization, emajis, links, hashtags, etc,



SA tasks

» senfiment classification (binary (polarity), ternary, n-
ary

» subjectivity classification (vs. objectivity)

» review usefulness classification

= opinion spam classification

» emotion analysis

» hate speech, offensive speech,
socially unacceptable speech

» stance detfection



Emotional Arcs
About 85 percent of 1,327 fiction stories in the digitized Project Gutenberg collection follow one of six
emotional arcs—a pattern of highs and lows from beginning to end (dark curves). The arcs are

[ ]
E m O '|' I O n O | defined by the happiness or sadness of words in the running text (jagged plots). All books were in
English and less than 100,000 words; examples are noted.
fates |
English
f. T [ ]

Arc: Rags to Riches (arise) Arc: Tragedy (a fall)
The Winter’s Tale Romeo and Juliet

U N
_/ \,/

Happiness

Below average | Above average

Beginning of book End
Arc: Man in a Hole (fall to rise) Arc: Cinderella (rise, fall, rise)
Children of the Frost The Mystery of the Hasty Arrow

Ao g | B
LN

Arc: Oedipus (fall, rise, fall)
The Evil Guest

Arc: Icarus (rise to fall)
Shadowings

" il N i
% Yo [P W




Public opinion surveys

Twitter sentiment vs. Gallup on consumer sentiment

Brendan O'Connor, Ramnath Balasubramanyan, Bryan R. Routledge, and Noah A. Smith. 2010.
From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series. In ICWSM-2010

window =15, r = 0.804

ﬁ Sept. 15, 2008: =t
i Lehman collapse, an)
AlG bailout
o —
t'? 4]
Feb 2008:
Stock market
o bottoms out, w
‘tll' begins recovery o
Q| -
HT: |
) = (Gallup Poll b
9 — Twitter Sentiment -

0

o
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Statistical machine translation

= non-neural approach: no longer used in practice but gives insight
of what is needed

» dea from the theory of information
= we franslafte from foreign language F to English E

= a document is tfranslated based on the probability distribution
p(e|f), i.e. the probability of the sentence e in target language
bcsed on the sentence in source language f

= Bayesrule
arg max, p(e | f) = arg max, p(f|e) p(e) / p(f)

= p(f) can be ignored asitis a constant for a given fixed sentence

» traditional (non-neural) approaches split the problem into
subproblems

» create alanguage model p(e)
= q separate translation model p(f | e)
= decoder forms the most probable e based on f



Noisy channel model

= given English senfence e

» during transmission over a noisy channel the
sentence e is corrupted and we get sentence in a
foreign language f, which we are able to observe

® {0 reconstruct the most probable sentence e we
have fo figure out:
= how people speak in English (language model), p(e) and

= how to transform a foreign language into English (franslation
model), p(f|e)



Noisy channel

™ reqsoning goes back

source sentenceé
Mary did not slap
the green witch. M sttt
“"Maria no dié una bofetada
a la bruja verde

»’“M did not slap.. £ hr\ P |
guess at source: 4,4§%&deg Ay !
; g {?q*nﬁh s noiy 2
Mary did not slap 2 : 7

el
the green witch s

[ Language Model P(E) x Translation Model P(F|E)



Language model

» cach target (English) sentence e is assigned a
probability p(e)

®» cstimation of probabillities for the whole
sentences is not possible (whye), therefore we
use language models, e.g., 3-gram models or
neural language models



Translation model

= we have 1o assign a probability of p(f | e), which is a
probability of a foreign language sentence f, given
target sentence e.

» we search the e which maximizes p(e) * p(f| e)

» fraditional MT approach: using translation corpus we
determine which franslation of a given word is the
most probable

» we take into account the position of a word and
how many words are needed to tfranslate a given
word



Neural machine translation (NMT)

| am a student — —» Je suis étudiant

(Sutskever et al., 2014, Cho et al., 2014)

®» sequence to sequence machine translation
(seg2seq)

» cnd-to-end optimization



Encoder-Decoder model

La croissance économique a ralenti ces dernieres années .

\ Decode /
[zl 022 p oo 'Zd]
/ Encode

Economic growth has slowed down in recent years .



Seqg2Seq for NMT

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL
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Encoder-decoder for sequences

SEQUENCE TO SEQUENCE MODEL




Encoder-decoder for NMT

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL

—

8.11

0.03

8.81

1X31NOD

-0.62




Training NMT

™ Using transformers
®» soffmax for output

®» we maximize
P(output sentence | input sentence)

= we sum errors on all outputs
= backpropagation
= fraining on correct translations

® s the translation, we return a sequence of words
with the highest probability (not necessary
greedily)



NMT with attention

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Encoding Stage Decoding Stage
Encoder Attention
RNN Decoder
RNN
Je suis étudiant
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Text summarization

Multi-
Document

Single-
Document

"h"‘-.
H

Document

Based on Input " Text
Type Summarization

|

Based on the
Purpose

mfﬁ l
Domain-
specific

Abstractive



Text summarization

= Evaluation:
=» ROUGE scores,
= BERTScore,
= with QA:
= question generation,
= searching for answers in the summary
= human

» | [ Ms
= Short and long texts
= Cross-lingual



Summarizers — Pegasus

» An example of a different, successful fransformer model

» Transformer BART model

» encoder-decoder architecture

= text garbling and reconstruction

»  Auxiliary tasks: masked language model and missing sentence generation

®» Demo: https://qi.googleblog.com/2020/06/peqgasus-state-of-art-model-for.nhtml

Masked tokens Target text
[ mythical ] [ names ] [ It is pure white . <eos> ]
f t N A
Transformer Encoder Transformer Decoder
bttt ttt ottt Pttt tt
Pegasus is [MASK2] . [MASKI] It [MASKZ] the model . [ <s> |t is pure white . ]
Inputtext‘E"“““~‘Hh:::THHH"“;:::::::::::t:::::h::::fﬂ-*'“'ﬂ’ﬂﬂ;;;;;:;;xt [Shifted Right]
[ Pegasus is mythicall (It is pure white Itmthe model . ]

(Zhang et al., 2019)



5. Final summary

Univerza v Liubljani
Fakulteta za racunalnistvo

in informatiko . i
Target evaluation metrics

h 4

4. The best hypotheses

ROUGE

Pre-trained BERT 3. Summarizer fine-tuned for

multilingual model '— Slovens
;rransfonner languagel
model '
| A 2. English summarizer with
I ! Slovene embeddings
XL summarization | A
Datasets Cross-lingual mapping
arc h |te Ct ure b 5 \ Slovene i Slovene embeddings
| avene language ‘ [ summarization J i : aligned with English i
model ::ataset dataset embeddings )

Slovene corpus

English embeddings] ‘ Slovene embeddings

e
.

Zagar, A., & Robnik-Sikonja, M. (2022). Cross-lingual transfer of abstractive summarizer to less-resource language. Journal of Intelligent
Information Systems, 58(1), 153-173.
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Contents

* about ensembles: how & why
* bagging and random forests

* boosting

e stacking

* a few other ideas



How ensembles works?

* learn large number of basic (simple) classifiers

* merge their predictions

* the most successful methods
* bagging (Breiman, 1996)
* boosting (Freund & Shapire, 1996)

* random forest (Breiman, 1999)
* XGBoost (eXtreme Gradient Boosting) (Chen & Guestrin, 2016)



Why ensembles work?

* we need different classifiers
 different in a sense that they produce correct predictions on different
instances
* the law of large numbers does the rest

 guidelines for basic classifiers
e different
e as strong as possible, but at least weak

* a weak classifier is an expression from computational learning
theory (COLT), it means a classifier whose performance is at
least € > 0 better than a random classifier



Bagging and random forests

* Bagging
* sample selection with bootstrapping
* Bagging for regression trees
* Bagging for classification trees
* Out-of-bag error estimation

* Variable importance: relative influence plots

e Random Forests



Bagging

e Decision trees suffer from high variance!

* If we randomly split the training data into 2 parts, and fit decision trees on both parts, the
results of different runs could be quite different

e We would like to have models with low variance

* To solve this problem, we can use bagging (bootstrap aggregating).




Bootstrapping

* Resampling of the observed dataset (and of equal size to the observed
dataset), each of which is obtained by random sampling with
replacement from the original dataset.

Bootstrapped
Sampling

__[o0e
000

00 000
TN 000
000
000

-




Bootstrapping

* Draw instances from a dataset with replacement

e Probability that we do not pick an instance after N

draws
1 N
(1— —) ~et=0.368
N

that is, only 63.2% of instances are used in one draw



What is bagging?

* Bagging is a powerful idea based on two things:
* Averaging: reduces variance!
* Bootstrapping: plenty of training datasets!

* Why does averaging reduces variance?
* Averaging a set of observations reduces variance.
* Given a set of n independent observations Z,, ..., Z,, each with
variance ¢?, the variance of the mean 7 of the observations is
given by 7°/n.



How does bagging work?

* Generate B different bootstrapped training datasets

* Train the statistical learning method on each of the B training datasets, and

obtain the prediction

00000
00000

Ensemble classifier

Original Data

Bootstrapping

Aggregating

Bagging



Bagging for regression trees

* Construct B regression trees using B bootstrapped training datasets

* Average the resulting predictions

* The trees are not pruned, so each individual tree has high variance but low bias.

* Averaging these trees reduces variance, and thus we end up lowering both
variance and bias ©



Bagging for classification trees

* Construct B decision trees using B bootstrapped training datasets

* For prediction, there are two approaches:
1. Record the class that each bootstrapped data set predicts and provide an overall prediction
to the most commonly occurring one (majority vote).
2. If our classifier produces probability estimates, we can just average the probabilities and
then predict to the class with the highest probability.

e Both methods work well.



A comparison of error rates

Here the green line
represents a simple majority
vote approach

The purple line corresponds
to averaging the probability
estimates.

Both do far better than a
single tree (dashed red) and
get close to the Bayes error
rate (dashed grey).

Test Error
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Out-of-bag error estimation

 Since bootstrapping involves random selection of subsets of observations to build
a training data set, then the remaining non-selected part could be the testing
data.

* On average, each bagged tree makes use of around 1- 1/e = 63% of the
observations, so we end up having 1/e = 37% of the observations useful for

testing



Variable importance measure

Bagging typically improves the accuracy over prediction using a single tree, but it
is now hard to interpret the model!

We have hundreds of trees, and it is no longer clear which variables are most
important to the procedure

Thus bagging improves prediction accuracy at the expense of interpretability

* But, we can still get an overall summary of the importance of each predictor using
relative influence plots



Relative influence plots

 How do we decide which variables are most useful in predicting the
response?
* We can compute something called relative influence plots.
* These plots give a score for each variable.

* These scores represents the decrease in MSE when splitting on a particular
variable

* A number close to zero indicates the variable is not important and could be
dropped.

* The larger the score the more influence the variable has.



Example: Housing data

* Median Income is
by far the most Fopulation
important variable.

AveBedrms
AveRooms

Housefge

* Longitude, Latitude e
and Average
occupancy are the
next most Longitude
Important. viedine

AveQccup

| 1 [ I . |
0 20 40 60 g0 100

Relative importance



Random forests

* It is a very efficient statistical learning method

* It builds on the idea of bagging, but it provides an improvement
because it de-correlates the trees

* How does it work?
* Build a number of decision trees on bootstrapped training sample,

* When building these trees, each time a split in a tree is considered, a random
sample of m predictors is chosen as split candidates from the full set of p
predictors.

* Usually mzﬁormzlﬂogz P



Why are we considering a random sample of m predictors
instead of all p predictors for splitting?

* Suppose that we have a very strong predictor in the data set along with a number
of other moderately strong predictors, then in the collection of bagged trees,
most or all of them will use the very strong predictor for the first split!

* All bagged trees will look similar. Hence all the predictions from the bagged trees
will be highly correlated

* Averaging many highly correlated quantities does not lead to a large variance
reduction, and thus random forests “de-correlates” the bagged trees leading to
more reduction in variance



Properties

* l[ow classification (and regression) error

* no overfitting

* robust concerning the noise and the number of attributes
* relatively fast

* learning instances not selected with bootstrap replication are used for
evaluation of the tree (oob = out-of-bag evaluation)



Out-of-bag evaluation

* on avera%e 1/e ~ 37% of the learning set is not used to train
each of the basic classifiers

* classification margin .
mr(x,y) =P(h(x) =y) - max P(h(x) =)
£y
 mris estimated with all classifiers where x is in oob set

 strength of the forest = average margin over training or OOB
set

e correlation of the trees in forest — var(mr)

7 std(h()?

* we want high strength and low correlation



OOB-error estimate

* with large number of o
trees, the OOB estimate is -
roughly equivalent to the
CV error estimate g 8-
e computationally much
cheaper than CV o _
* still overly optimistic R
Test: RandomForest
o — OOB: Bagging
S — OOB: RandomForest

[ [ I [ [ | [
0 50 100 150 200 250 300

Number of Trees

Heart data set



RF attribute evaluation

* evaluation of attribute A is the difference between
 strength of the forest and
 strength of the forest when values of A are randomly shuffled

* evaluated on the OOB set
 detects also strong conditional dependencies

e works also on an instance-level like nomogram (evaluates only the
trees where the instance is in the OOB set)



Similarity of instances

build instance similarity matrix

when two instances end in the same leaf of the tree we increase their similarity
score

e average over all trees gives similarity measure

we use that similarity measure to:
* detect outliers
* determine typical cases for each class
e scaling
* missing values
 clustering
* visualization



Random forest with different values of “m”

* Notice: when
random forests
are built using
m = p, then this
amounts to

bagging.

Test Classification Error

m=p
0 m=p/2
o | — M= p
<
S
™
S
oV
S
I I | I |
100 200 300 400 500

Number of Trees

Gene expression data (15 classes)
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Boosting

 another ensemble method

* grows trees sequentially: each added tree uses information about

errors of previous trees

Data

Subsample

Subsample

Subsample
n

Prediction
Model 1
Scores
A
. t,\c‘ .
}6‘::’\&3\\,’
Prediction
Model 2
Scores
P
TS
et
+
Prediction
Model n
Scores
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Pseudocode for boosting in regression

1. Set f(x) =0 and r; = y; for all i in the training set.
2. Forb=1,2,..., B, repeat:

(a) Fit a tree f* with d splits (d+ 1 terminal nodes) to the training
data (X, 7).

(b) Update f by adding in a shrunken version of the new tree:
flx) = flx) +Af" (), (8.10)
(c) Update the residuals,
ri 1 — MO (). (8.11)

3. Output the boosted model,

fla)y=>Y " Arx). (8.12)

28



Boosting

e each tree takes into account residuals (i.e. errors) of previous trees
e each tree is small, containing only d splits (e.g., d=1, decision stumps)
* learning is slow, controlled by A

* Parameters of boosting in regression
 The number of trees B, selected with, e.g., CV; boosting can overfit.

e The shrinkage parameter A, a small positive number (e.g., 0.01 or 0.001),
problem dependent; small A requires large B to achieve good performance

 The number d of splits in each tree, which controls the complexity of the
boosted ensemble. Often d = 1 works well, but d also controls interaction
order (d splits can contain at most d variables).



Boosting performance

Test Classification Error

0.10 0.15 0.20 0.25

0.05

Boosting: depth=1
Boosting: depth=2
—— RandomForest: m=|p

I I I I I
1000 2000 3000 4000 5000

Number of Trees
Gene expression data (15 classes)
error of single tree is approx. 0.24, std. error around 0.02
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Boosting in classification

* AdaBoost, Freund & Shapire, ICML, 1996

* training instances are weighted according to the success of
their classification in the previous iteration
* increase weight of misclassified instances
» decrease weight of correctly classified instances
* the learning focus is transferred to the most difficult instances

* final classification is a weighted voting of basic classifiers

* deterministic algorithm, works because training sets are
different

* mostly better than bagging

* this original version can suffer from overfitting but
there are better variants



AdaBoost (Freund and Schapire, 1996)

* Given a set of d class-labeled instances, (X, y,), ..., (X, V,,)

* Initially, all the weights of instances are set the same (1/n)

* Generate k classifiers in k rounds. At round J,

Instances from D are sampled (with replacement) or reweighted to form a training
set D, of the same size

Each instance’s chance of being selected is based on its weight

A classification model M, is derived from D,

Its error rate is calculated using D, as a test set

If an instance is misclassified, its weight is increased, otherwise it is decreased

*  Errorrate: err(X;) is the misclassification error of instance X;.

Classifier M, error rate is the sum of the weights of the misclassified instances:

d
error(M;) =>_w; xerr(X;)
j

*  The weight of classifier M/svoteis | 1—error(M;)

error(M,)
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AdaBoost Example
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XGBoost — eXtreme Gradient Boosting

N
Additive model with loss L: :
mln L y?ZQTLf('CC7 /Bn)
n=1

CVTL:1:N75n:1:N

GB approximately solves this objective iteratively and greedily:

min L (y, fn—l((m) ¢n anfn(aj? BN))

a?'l, ’67?,

Chen & Guestrin(2016), XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining https://arxiv.org/abs/1603.02754

https://xgboost.readthedocs.io/en/latest/build.html#r-package-installation

34



Other possibilities for tree ensembles

* sampling in RF:
* p-sampling without replacement (sampling the proportion of p instances, e.g., p=10%)

limiting the size of the trees in RF and bagging
* more trees needed

reduced computational complexity

regularization



Weighting of the trees

* not all trees are equally important (absolutely and in all
parts of an instance space)

* weight the trees according to the data
e assume linear combination of base coefficients

T
F(x,a) = a, + z a; t;(x)
=1

* solve for coefficients a



Penalization

T

n
1
a=arg min—z L(y;ag+ Z a;j ti(x;))
a N ’
i=1 j=1
* direct minimization gives poor generalization,

therefore penalize

n T
1
a(l) = arg m{}n (N; L(y;aq + z a;j tj(x;)) + AP(a))

j=1



Common penalty functions

* ridge regression
T

P(a) ZZ‘GJ‘Z

j=1

 |asso, sure-shrink

T
P@ =) g
j=1

 solve with gradient descent algorithms (Friedman & Popescu, 2003)



Local weighting

* regularization: global importance of base models

* local importance: local regularization, weighting with margin of similar instances



Locally weighted voting for RF

* observation: not all trees are equally good in all parts of the problem
space

e opportunity: use OOB instances to locally evaluate the quality of trees

* locality: forest defines the similarity between instances



Weighted voting algorithm for RF

* in classification of a new instance
* find t most similar instances

* classify each of the similar instances with the trees where it is in the OOB set,
and record the margin for the trees

e compute weights of the trees as the average recorded margin (for trees with
negative margin set the weight to zero)

 forest classification is the weighted voting of the trees

Marko Robnik-Sikonja: Improving random forests. In Proceedings of European conference on machine learning ECML’04, pp. 359-370. 2004.



.. ()
Naive Bayes based ensembles / \
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* Naive Bayes is a probabilistic classifier

argmax P(y |x) = argmax P(y,x)/P(x)
J J
= argmax P(y, X).
J

e assuming that the attributes are independent given the class

P(y,x) =Py) || P(zi | y).
€N

42



Semi naive Bayes (SNB)

* besides the class, SNB allows dependence on some attributes

Fat

P(y,x) = P(y) || P(xily,w(x:)),

1EN

* Example: 1-dependence estimator (ODE), where X, is “super-parent”

o
@@



AODE ensemble

* Averaged One-Dependence Estimator (AODE) (Webb et al. 2005)

* SPODE: Super-Parent One Dependence Estimator — Semi naive Bayes
where attributes are dependent on class and one more attribute

 AODE is an ensemble of SPODE classifiers, where all attributes in turn
are used in SPODE classifier and their results are averaged

* Compared to naive Bayes, it has higher variance but lower bias



Stacking

e A method to combine

heterogeneous predictors Eanceph DlagratioEStacing
* Predictions of base learners ——

(level-0 models) are used as = [ classifer oipunmle

input for meta learner (level-1

output value
mOdE|) training data output value i
== | classifier } classifier | -

* Base learners are usually

output value

different learning schemes

training data

::::;.. classifier

Level O Level 1



Instance; —

meta instances

Instance,

Stacking scheme

' BC,

_>O

' BC,

—0.92

' BC,

—0.85

BC,

BC,

0

0.92

BC,

0.85

Class




Instance, —

meta instances

Instance,

Instance,

Stacking

' BC,

' BC,

—0.01

' BC,

—0.23

BC,

BC,

0
1

0.92
0.01

BC,

0.85
0.23

Class

0




meta instances

Instance,

Instance,

Stacking

Meta Classifier

T

BC, | |BC,
0 0.92
1 0.01

BC,

0.85
0.23

Class

0




Actual stacking

* Predictions on the traininﬁ data can’t be used to generate
data for level-1 model! Why not?

e The reason is that the level-0 classifier that better fit
training data will be chosen by the level-1 model!

* Thus, k-fold cross-validation-like scheme is employed. An
example for k = 3!

Meta Data




Stacking meta-learner

* Which algorithm to use to generate meta learner?
* In principle, any learning scheme can be applied

* For level-1 classifier Ting & Witten (1999) recommend multiple response
linear regression (MRLE, note this is a regressor)

e a classification problem with C classes is transformed into C linear

regression problems, where response for problem i is 1 if the class equals
i, otherwise it is O

* to classify a new instance employ all C linear models, the prediction with
highest value is selected as the output



Mixture of Experts (MoE)

* Ensemble technique, useful in very large problems

. (ﬁDE|ayer

Gix),| [G(X)ny

Expert 1
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MOE in transformers

b

)

[ Add + Normalize

1

[ Switching FFN Layer

1

[ Add + Normalize

1

Self-Attention

f

X

v[TTTTT]

Add + Normalize

[
1

- -

Add + Normalize
Self-Attention
A
Positional 9 Positional 9
embedding ¢ embedding
x [T x[TTTTT]
Parameters

More



MARS - Multivariate Adaptive Regression Splines

. Generalization of stepwise linear regression
. Modification of trees to improve regression performance
« Able to capture additive structure

. Not tree-based



MARS base models

Additive model with adaptive set of basis vectors

Basis built up from simple piecewise linear functions

(t-x), (x-t),

t

Set “C” represents candidate set of linear splines, with “knees” at each data point X.

Models are built with elements from C or their products.

¢ = {(Xj —t),,(t- Xj)+}

te{xyj X2 XN;}J=1,2,00D

Basis collections C: [C|=2*N*p



MARS procedure

M
Model has the form: fX)=p,+ z Bmhm (X)
m=1

1. Given a choice for the h,,, the coefficients g are chosen by the
standard linear regression.

2. Start with hy(X) =1
All functions in C are candidate functions.

3. At each stage, consider as a new basis function pair all products of
a function h,, in the model set M, with one of the reflected pairs in

C. By+1hi(X) - (Xj — t)+ + By (X) - (t — Xj)_l_:hl EM

4. We add to the model terms of the form:

hn(X) - (¢ —XJ-)+ hn (X) - (X — t)+



MARS, step 1

M (old) C M (new)

* On each step, add the term, which reduces residual error most, into M

* Repeat steps (until, e.g., [M ] >=threshold)



MARS, choosing number of terms

Large models can overfit.

Backward deletion procedure: delete terms which cause the smallest
increase in residual squared error, to get a sequence of models.

Pick Model using Generalized Cross Validation:

i1 (Yi - f(xi))z

GV = —a My

M(A) is the effective number of parameters in the model.
C=3, r is the number of basis vectors, and K knots

M) =r+cK

Choose the model which minimizes GCV (1)



MARS summary

Basis functions operate locally

Forward modeling is hierarchical, multiway products are built up
only from existing terms

Each input appears only once in each product

Useful option is to set limit on order of operations. Limit of two
allows only pairwise products. Limit of one results in an additive
model
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Support vector machines

Imagine a situation where you have a two class classification problem with
two predictors X, and X,.

Suppose that the two classes are “linearly separable” i.e. one can draw a
straight line in which all points on one side belong to the first class and
points on the other side to the second class.

Then a natural approach is to find the straight line that gives the biggest
separation between the classes, i.e. the points are as far from the line as
possible

This is the basic idea of support vector classifiers.



An illustration

* Cisthe minimum
perpendicular distance
between each point and the
separating line.

e We find the line which
maximizes C.

* This line is called the “optimal
separating hyperplane”

* The classification of a point
depends on which side of the
line it falls on.




More than two dimensions

* This idea works just as well with more than two predictor variables.

* For example, with three predictors you want to find the plane that produces the
largest separation between the classes.

* With more than three dimensions it becomes hard to visualize a plane but it still
exists. In general they are caller hyper-planes.



Non-separating classes

In practice, it is not usually possible to find a hyper-plane that perfectly
separates two classes.

In other words, for any straight line or plane that we draw, there will always be
at least some points on the wrong side of the line.

In this situation, we try to find the plane that gives the best separation between
the points that are correctly classified, subject to the points on the wrong side
of the line not being off by too much.

It is easier to see with a picture!



Non-separating example

* Let £’ represent the amount that the ;I:T,B + B8y =0
i-th point is on the wrong side of the
margin (the dashed line).

* Then we want to maximize C,
subject to

Al -

n
zfi* < Constant
i=1

* The constant is a tuning parameter o
that we choose.




A simulation example with a small constant

* The distance between the
dashed lines represents
the margin or 2C.

* The purple lines represent
the Bayes decision
boundaries

Training Error:0270 =B
TestError: 0288 oo
Bayes Error: 0210 g




The same example with a larger constant

* Using a larger constant allows for a
greater margin and creates a slightly
different classifier.

* Notice, however, that the decision
boundary must always be linear.

Training Error: 026 =7 AT %
TestError: 030 - oo
Bayes Emor: 021 1iiiiiHIHIEIEEIGRGIRIGG

-

Training Error: 0.270
Test Error: 0.288 1"
Bayes Error: 0210 2%




Non-linear support vector classifier

* The support vector classifier is fairly easy to think about. However, because it only
allows for a linear decision boundary, it may not be all that powerful.

* Recall that linear regression is extended to non-linear regression using a basis
function i.e.

Yi = Bo + B1b1(Xi) + B2b2(Xi) + -+ Bpbp(Xi) + &



A basis approach

* Conceptually, we can take a similar approach with the support vector classifier.

* The support vector classifier finds the optimal hyper-plane in the space

spanned by X, X,,..., X,
* |Instead, we can create transformations (or a basis) b,(x), b,(x), ..., b,,(x) and find
the optimal hyper-plane in the space spanned by b,(X), b,(X), ..., b,,(X).

* This approach produces a linear plane in the transformed space but a non-
linear decision boundary in the original space.

* This is called the support vector machine classifier.



Basis example

* Suppose we use polynomials as bases
X1, X5, X2, X2, X, X5, X3, X1 X5, ...
* We go from p dimensional space to M>p dimensional space and fit
the SVM classifier in the enlarged space

* For the bases (X, X5, X?, X2, X, X,) this gives a non-linear classifier in
the original space
B1X1 + BoXy 4 BaX{ + PuXs + BsX1X, =0



In reality

While conceptually the basis approach is how the support
vector machine works, there are some technical details which
means that we don’t actually choose b,(x), b,(x), ..., by,(x).

Instead we choose a kernel function which takes the place of
the basis.

* Kernel operates on inner products between instances

« Common kernel functions include
* Linear
e Polynomial
e Radial Basis
e Sigmoid



Polynomial kernel on Sim data

SVM - Degree-4 Polynomial in Feature Space

* Using a polynomial kernel, we
now allow SVM to produce a
non-linear decision boundary.

 Notice that the test error rate is
a lot lower. %

d

p
K(zi,zy) = |1+ Z TijTil
j=1

TranngErmor. 0180 e %
TestError: 0245 5 1 UEISIITeeel
Ba‘_y"E-SErmr D.E‘ID:::Z'.ZZZZ'.Z::Z'.Z-Z.Z.':.. . S 1

13



Radial basis kernel

* Using a radial basis kernel you often get an even SVM - Radial Kernel in Feature Space
lower error rate.

p
K(zi,zy) = exp(—y Z(ﬂ%g — 377:'3')2)-
j=1

Training Error: 0160 v G0
TestErmor: 0218 . ToTe
Bayes Error: 0210 -~ e oe




SVM for more than two classes

e The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?

* One Versus All (OVA)
Fit K different 2-class SVM classifiers f,(x), k = 1,...,K; each class versus
the rest. Classify new x to the class for which f,(x) is largest.

* One Ve;gus One (OVO)
Fit all (2) pairwise classifiers f, (x). Classify new x to the class that
wins the most pairwise competitions.

* Which to choose?
If K is not too large, use OVO.



SVM for regression

* As in classification, seek and optimize the generalization bounds given
for regression.

* The loss function ignores errors which are situated within the certain
distance of the true value; it is often called — epsilon intensive — loss
function.

-‘-“' ;
Vil Support Vector Machine for Regression - Radial Basis Kernel

=¥

for linear SVM regression
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Understandable Al
Comprehensible Al
Accurate Al/ML

Transparent Al Black box

Overview of topics  Intefpretable ML

s Data science
< efligible MI

Responsable Al

Interactive Al Explainable Al
Ethics

* Visualization and knowledge discovery.
* General methodology for explaining predictive models.

 Model level and instance level explanations, methods EXPLAIN and
IME.



Visualization

e 15t rule of data mining: know your data.

* Therefore: visualizations, getting background data.

 Visualize: distributions of individual variables, their relations, etc.

* For high dimensional data sets one can use scaling, e.g. UMAP or t-SNE

* Clustering is useful in supervised tasks to get insight into the relation
between predicted values Y and basic groups in the data. If unrelated,
feature set might need amendments.



Visualizations

 Human visual perception has certain limitations:
e we see what we want to see
* we see what we see often
* itis more difficult to notice unexpected patterns

* practice in detection of unknown

. . . . Are the horizontal lines parallel or do they slope?
* use visualizations which expose “the unknown”

How many legs does this elephant have?



Human pattern recognition

* We see inexistent patterns because we WANT to see them (we feel
lost without them).

’
i n
o IO

..'.f‘.o vt ) .

“The researchers found that when people were primed to feel out of control,

they were more likely to see patterns where none exist.” (See a Pattern on
Wall Street?, John Tierney,  Science)




Facts about simple visualizations

* Pie charts are a bad choice: hard to read, similar colors, slope, legend
is too far away

e Bar chart is much better

Sector Allocation of Holding

= FINANCIALS

= RESOURCES

m UTILITEES

= NON-CYCLICAL
SERVICES

21.45% NON-CYCLICAL

CONSUMER GOODS
m CYCLICAL SERVICES 14.17% m INFORMATION

TECHNOLOGY

961% = GENERAL INDUSTRES

3.83% m BASIC INDUSTRIES

367% mCYCLICAL CONSUMER

GOO0DS

Sector Allocation of Holding

Financials

Non-Cyclical Consumer Goods
Cyclical Services
Information Technology
Resources

General Industries
Utilities

Basic Industries
Non-Cyclical Services
Cyclical Consumer Goods
Other

21.45%
18.09%
14.17%
13.61%
9.61%
8.99%
3.83%
3.70%
3.67%
1.87%
1.01%

18.09% The best pie chart
s “ Pie |l have eaten
8.99% r <

= Pie |l have not
i yel eaten
1.87%




Pie charts jokes

Sky

* notoriously bad

sunny side of pyramid

shady side of pyramid




Facts about simple visualizations

e Bar charts, box plots can be OK

* 3D graphs are almost never OK for 2D info: spider plot, bowl of noodles

* Take care to be clear and do not manipulate

* A more detailed examples and recommendations
https://github.com/cxli233/FriendsDontLetFriends
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Understanding

ENCODE

Walid Saba, "Machine Learning
Won't Solve Natural Language

Understanding", The Gradient,
2021.

Xanadu, who is a living young human
adult, and who was in graduate
school, quit graduate school to join a
software company that had a need
for a new employee.

-/
~~/

linguistic utterance

Xanadu quit graduate school to join a
software company.

DECODE




Understanding ML models is difficult

Labeled data
Embodied Abstract concepts exemplifying Machine-learning
Real world human experience in human mind these concepts model

f(x)

p ?

May not always Doesn’t match the Matches the
transfer well to human mental model training data
the real world it came from

10



Predictive modeling scenario

We want to learn from past examples,with known outcomes.

I

To predict the outcome for a new patient.
11



Explanation of predictions

* a number of successful prediction algorithms
exist (SVM, boosting, random forests,
neural networks), but to a user they are

* many fields where users are very much concerned with the
transparency of the models: medicine, law, consultancy,
public services, etc.

* Some explanation methods are applicable to arbitrary
predictors



P
HHIE
Univerza v Ljubljani
Fakulteta za racunainisivo
in informatiko
L W R i = problemat

Model comprehensibility B

impulsivity = problematic

yes, yes, yes] [no, yes, yes]
[24,25,20]: 36 [78, 88, 76]: 131

* decision support: model comprehensibility is important to gain users’
trust

* knowledge acquisition
* some models are inherently interpretable and comprehensible

 decision and regression trees, classification and regression rules, linear
and logistic regression 1/(1+exp(-(bo+b1x1+...bpxp))

* really?




Domain level explanation

* trying to explain the
“true causes and effects”
* physical processes
* stock exchange events

 usually unreachable except for artificial problems with known relations
and generator function

e some aspects are covered with attribute evaluation, detection of
redundancies, ...

* targeted indirectly through the models



Model-based explanations

All models are wrong,

but some are useful.

George Box, British statistician (1919 —2013)

* make transparent the prediction process of a particular model

* the correctness of the explanation is independent of the
correctness of the prediction but

* better models (with higher prediction accuracy) enable in
principle better explanation at the domain level

* explanation methods are interested only in the explanation at
the model level and leave to the developer of the model the
responsibility for its prediction accuracy



wo flavours of explanation technlques

g a ion

- ﬂ |:> E class label

"_W—"

Y model Specific /?o E> relevance par nnetnze o - ug) aggregator g( - ;wy)
4

. ({f -— m explanation
* especially used for m m E>m [>E ',a@ gg o

deep neural networks 5

(Al i=1

Melis, D.A. and Jaakkola, T., 2018. Towards robust interpretability with self-explaining neural networks. In Advances in
Neural Information Processing Systems (pp. 7786-7795).

* model agnhostic
e can be used for any predictor,
* based on perturbation of the inputs
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|dea of perturbtion-based explanations

* importance of a feature or a group of features in a specific model can
be estimated by simulating lack of knowledge about the values of the
feature(s)

prediction prediction without A A's contribution
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Instance-level explanation

e explain predictions for each instance
separately

* this is what practitioners applying models are
interested in

* presentation format: impact of each feature
on the prediction value

* model-based

attributes

sex

age

status

Data set: titanic; model: naive Bayes
p(survived=yes|x) = 0.50; true survived=yes

- .

instance

I I I
-0.5 0 0.5

information difference

male

adult

first

@-
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I\/I O d e | - | eve | eX p | a n atl O n Data set: titanic, survived=yes

model: neural network

* the overall picture of a problem the model -
conveys - —
* this is what knowledge extractors are Cew [
interested in g ]
* presentation format: overall importanceof & | -
each feature, S seeond
but also rules, trees I
* model-based o T

information difference
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The method EXPLAIN

e “hide” one attribute at a time
e estimate contribution of attribute from

sex
|

age
|

attributes

status
|

p(yklx) — P\ iy (Yl

Data set: titanic; model: naive Bayes
p(survived=yes|x) = 0.50; true survived=yes

T .

instance

Robnik-Sikonja, M., & Kononenko, I. (2008). Explaining classifications for individual instances.
IEEE Transactions on Knowledge and Data Engineering,, 20(5), 589-600.

T T T
-0.5 0 0.5

information difference

male

adult

first



Explaining EXPLAIN

* assume an instance (x, y); components of x are values of attributes A,

 for a new instance x, we want to know what role each attribute’s value play

in the prediction model f, i.e. to what extend it contributed to the
classification f(x)

* for that purpose

* we compute f(x \ A), the model's prediction for x without the knowledge
of the event A. = a, (marginal prediction)

* we comparing f(x) and f(x \ A)) to assess importance of A. = a,

* the larger the the difference the more important the role of A=a, in the
model

* f(x) and f(x \ A)) are source of explanations



Evaluation of prediction differences

* how to evaluate f(x) - f(x \ A)

* in classification, we take f(x) in the form of probability

1.difference of probabilities
probDiffi(y|x) =p(y|x) - ply[x\ A)
2.information gain (Shannon, 1948)
infGain(y|x) =log, p(y|x) - log, p(y|x\ A)

3. weight of evidence also log odds ratio (Good, 1950)

odds(z) = p(z) / (1 - p(2))
WE,(y|x) =log, odds(y|x) - log, odds(y|x\ A))



Implementation

* p(y|x): classify x with the model

* p(y|x\ A) —simmulate lack of knowledge of A,in the model

* replace with special NA value: good for some, mostly bad, left to the mercy of
model’s internal mechanism

 average prediction across perturbations of A,
p(y[x\ A) = X, p(A=a,) p(y[x < A= a,)

» use discretization for numeric attributes
* use Laplace correction for probability estimation

* we could build a separate model for each p(y|x\ A)
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* “hide” one attribute at a time

e estimate contribution of attribute from

p(yk|x) — ps\giy (Yk| )

e weakness: if there are redundant ways to express concept, credit is not
assigned

e example:
C=A,VAA,
explanation for instance (A,=A,=A;=1)




r e | ne method IME

* (Interactions-based Method for Explanation)
* “hide” any subset of attributes at a time (22 subsets!)

* the source of explanations is the difference in prediction using a subset of
features Q and an empty set of features {}

Aq = h(xq)—h(x)

* the feature gets some credit for standalone contributions and for contributions
In interactions

prediction decomposition into interactions A's contribution

-> -> '&@




IME: sum over all subsets
Faculty of Compruter arnd (]

Information Science

* the contributions are

2
|

1
D —— (Qquiiy — 4¢)
QC{1,2,....a}—{i} a’(a—lQl—l)

Strumbelj, E., Kononenko, I. & Robnik-Sikonja, M., Explaining instance classifications with interactions of subsets of feature values.
Data & Knowledge Engineering, Oct. 2009, 68(10):886-904
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e coalitional game of a players (attributes)

* players form coalitions (i.e. interactions)

* how to distribute the payout to the members of a coalition®
assign the credit for prediction)

* The Shapley value is the unique payoff vector that is
e efficient (exactly splits payoff value),
e symmetric (equal payments to equivalent players)
 additive (overall credit is a sum of participating in coalitions), and
* assigns zero payoffs to dummy players (no contribution to any coalition).

@-
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- )
Shapley value ik &N 89

Ham:

(m—s—1)!s!
n!

Sh;‘(’v’) = z

SCN\{i},s=|S]

(v(SU{i})=w(S)), i=1...

1
i = Z =1 (Qaufiy — 4Q)
QC{1,2,....a}—{i} a’(a—|Q|—1)

* Shapley value can be efficiently approximated
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e Shapley value can expressed in an alternative formulation
* m(a)is the set of all ordered permutations of a

* Pre'(O) is the set of players which are predecessors of player i in the
order O € m(a)

wilk,x) = i' Z (A(P’rei((?) U{i})(k,x) — A(Prei(O))(,’g,;g)) —
" Oen(a)

1
T a Z (pPrei(O)u{i}(ny) — PPret(0) (y""‘|$)) ’
" Oen(a)

* smart sampling over subsets of attributes
e computationally feasible approach

Strumbelj, E., & Kononenko, I. (2010). An efficient explanation of individual classifications using game theory.
Journal of Machine Learning Research, 11, 1-18
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Algorithm 1 Approximating the contribution of the i-th feature’s value, ¢;, for instance x € 4.
determine m, the desired number of samples
¢; 0
for j=1tomdo
choose a random permutation of features O € t(N)
choose a random mstance y € 4
v — f(x(x,, Pre'(0) U{i}))
vy — f(x(x,, Prei( 0)))
¢i < @i+ (vi —2)
end for
Qi — %

* by measuring the variance of contributions, we can determine the
necessary number of samples for each attribute




Visualization of explanations
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* instance-level explanation on Titanic data set

Explaining survived=yes
instance: 583, model: rf

attribute attribute value

sex — — female

age — i — adult

Robnik-Sikonja, M. (2015), ExplainPrediction: Explanation of Predictions for Classification and Regression.
R package version 1.3.0. http://cran.r-project.org/package=ExplainPrediction




Visualization of explanations
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* model-level explanation on Titanic data set

Explaining survived=yes

model: rf
attributes/valuves
male —
female —
child —

adult — [

crew —

3rd —

2nd —
1st

Method: EXPLAIN, type: WE
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 Local Interpretable Model-agnostic Explanations)
* perturbations in the locality of an explained instance

. +’
[ ] +’ N
-
+ == @
-|-1-IL. o +
] @ o® .
|
I .

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should i trust you?: Explaining the predictions of any classifier. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135-1144. .
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e optimize a trade-off between local fidelity of explanation and its

interpretability .
o
+ @
: -
e(x) = argmin L(f.¢.7) + Q(g) e .
gcCG | @ e®

* Lis alocal fidelity function, f is a model to be explained, g is an
interpretable local model g (i.e. linear model), m(x, z) is proximity
measure between the explained instance x and perturbed points z in its
neighborhood, () is a model complexity measure
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LIME details o

* LIME samples around the explanation instance x to draw samples z
weighted by the distance w(x,z)

e samples z are used to training an interpretable model g (linear model)
* the squared loss measures local infidelity
* number of non-zero weights is complexity

e samples are weighted according to the Gaussian distribution of the
distance between x and z
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LIME strengths and weaknesses

* faster than IME
» works for many features, including text and images

* no guarantees that the explanations are faithful and stable
* neighborhood based: a curse of dimensionality

* may not detect interactions due to (too) simple interpretable local
model (linear model)
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SHAP

* SHapley Additive exPlanation

* unification of several explanation
methods, including IME and LIME

* KernelSHAP: based on Shapley values which are estimated using a
LIME style linear regression

* faster then IME but
e still uses linear model with all its strengths and weaknesses

Lundberg, S. M., & Lee, S. |. (2017). A unified approach to interpreting model predictions.
In Advances in Neural Information Processing Systems (pp. 4765-4774).




R Use case: breast cancer recurrence
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Data set: onko; model: PRBF

p(recurrence=1|x) = 0.81; true recurrence=2 Cancer recurrence within 10 years
menop binary feature indicating menopausal status

stage tumor stage 1: less than 20mm, 2: between 20mm and 50mm, 3: over 50mm

age = T —4 grade tumor grade 1: good, 2: medium, 3: poor, 4: not applicable, 9: not determined
histType histological type of the tumor 1: ductal, 2: lobular, 3: other
=7 = — 1 PgR level of progesterone receptors in tumor (in fmol per mg of protein) 0:

less than 10, 1: more than 10, 9: unknown
invasive invasiveness of the tumor 0: no, 1: invades the skin, 2: the mamilla,
3: skin and mamilla, 4: wall or muscle
nLymph number of involved lymph nodes 0: 0, 1: between 1 and 3, 2: between 4 and 9,
3: 10 or more
famHist medical history 0: no cancer, 1: 1st generation breast, ovarian or prostate cancer
2: 2nd generation breast, ovarian or prostate cancer,
3: unknown gynecological cancer 4: colon or pancreas cancer,
5: other or unknown cancers, 9: not determined
LVI binary feature indicating lymphatic or vascular invasion
ER level of estrogen receptors in tumor (in fmol per mg of protein) 1: less than 5,
2:5t0 10, 3: 10 to 30, 4: more than 30, 9: not determined
maxNode diameter of the largest removed lymph node 1: less than 15mm,
2: between 15 and 20mm, 3: more than 20mm
I I I [ I I I I [ I I posRatio ratio between involved and total lymph nodes removed 1: 0, 2: less that 10%,
-5 -4 -3 -2 - 0 1 2 3 4 5 3: between 10% and 30%, 4: over 30%
age patient age group 1: under 40, 2: 40-50, 3: 50-60, 4: 60-70, 5: over 70 years

LWl —

nlLymph —

iInvasve =

attributes

FgR —

grade —

stage —

menop —

weight of evidence

Robnik-Sikonja, M., Kononenko, 1., & Strumbelj, E. (2012). Quality of classification explanations with PRBF. Neurocomputing, 96, 37-46. .



R Use case: breast cancer recurrence

Faculty of Compruter arnd
Information Science

Data set: onko5, class=1
model: RF

posRatioE

maxNodeE

invasive—
g_

1_
P
¢} 3]
]
histType—
ypg_




Use case: B2B sales forecasting
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* Goals: improve understanding of factors influencing the outcome and improve
the sales performance

A case B2B, Status = Won
instance: 4 model: rf

attnibute attnbute value
{ / Sales_cmplx i  moderate

Rangom Forest \ £

Classification e Z/ y
& \ ) g/ Rocans
Q / \ \'& x| ]

1 s § Seler -1 - AM
g \ J ¢ \ |

Classdfication Tree 4 i

| Dats — Test Data .5."/ - .'.‘
J = ' — A A K q Exsting_cient - - yes q
Voa,a \_e-fv' -
4 \ 8

'3
Logistic Regression 3

() Adhority ‘m L decision

Confusion Malrix

B2B sales experts

IIIIIIIIIII

-100 60 20 0 20 40 60 80
Nawe Bayes
method EXPLAIN, type WE
H - p(Status=Won) = 0.83, true Status=Won
predictive models

New insights explanation

Bohanec, M., Borstnar, M. K., & Robnik-Sikonja, M. (2017). Explaining machine learning models in sales predictions.
Expert Systems with Applications, 71, 416-428.
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B2B sales attributes

Attribute Description Values

Authority Authority level at a client side Low, mid, high
Product Offered product e.g. A, B, C, etc.
Seller Seller’s name Seller’s name
Competitors Do we have competitors? No, ves, unknown

Company size
Purchasing department
Partnership
Budget allocated
Formal tender

RFI

RFP

Growth

Positive statements
Source

Client

Cross sale

Scope clarity
Strategic deal

Up sale

Deal type

Needs defined
Attention to client
Status

Size of a company

[s the purchasing department involved?
Selling in partnership?

Did the client reserve the budget?

[s a tendering procedure required?
Did we get request for information?
Did we get request for proposal?
Growth of a client?

Positive attitude expressed?

Source of the opportunity

Type of a client

A different product to existing client?
Implementation scope defined?

Does this deal have a strategic value?
Increasing sales of existing products?
Type of a sale

Is client clear in expressing the needs?
Attention to a client

An outcome of sales opportunity

Big, mid, small

No, ves, unknown

No, ves

No, ves, unknown

No, ves

No, ves

No, ves

Growth, stable, etc.
No, ves, neutral

e.g. referral, web, etc.
New, current, past

No, ves

Clear, few questions, efc.
Very important, etc.
No, ves

Consulting, project, etc.
Info gathering, etc.
First deal, normal, etc.
Lost, won
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attributes/values
Yes —

Unknown —
No —
Competitors —
Past —
New —
Current —
Client —
Yes —
No —
Up_sale
Yes —
No —

Neutral —

Posit_statm —

B2B sales: drill in

attributes/values
Product P —
Product N —
Product L —
Product K —
Product J —
Product | —
Product H —
Product G —
Product F —
Product E —
Product D —
Product C —
Product B —
Product A —
Product —
Seller 9 —
Seller 8 —
Seller 7 —
Seller 6 —
Seller 5 —
Seller 4 —
Seller 3 —
Seller 20 —
Seller 2 —
Seller 17 —
Seller 16 —
Seller 15 —
Seller 14 —
Seller 13 —
Seller 12 —
Seller 11 —
Seller 10 —
Seller 1 —
Seller —

-20 -i10 -8 -6 -4 -2 O 2 - 6 8

method IME method IME
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B2B sales: EXPLAIN and IME

attributes attributes
Att_t_client — Att_t_client —
Needs_def - Needs_def —
Deal_type - Deal_type —
Up_sale — Up_sale —
Cross_sale Cross_sale —
Strat_deal Strat_deal —
Scope — Scope —
Client — Client —
Source — Source —
Posit_statm — Posit_statm —
Growth — Growth —
RFP — RFP —
RFI RFI —
Forml_tend — Forml_tend —
Budgt_alloc — Budgt_alloc —
Partnership — Partnership —
Purch_dept — Purch_dept —
Competitors — Competitors —
Comp_size — Comp_size —
Authority — Authority —
Seller Seller —
Product - Product —

1 1 1T T T T 1 | [ [ [ |

-10 -2 2 4 6 8 -20 -15 -10 -5 0

method EXPLAIN, type WE method IME
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B2B sales: learning from errors

Explanation case, Status = Won
instance: 116, model: rf

attribute
Attt client —

Up_sale —
Client —
Source —
Posit_statm —
Budgt_alloc —
Competitors —

Seller —

Product —

attribute value

— Strategic account

— Yes

— Current
— Joint past
— Neutral

— No

— No

— Seller 1

— Product C

-50 -30

-10 10 30 50

Explanation case, Status = Won
instance: 204, model: rf

method IME
p(Status=Won) = 0.71; true Status=Lost

attribute attribute value
Att_t_client — B — Normal
Up_sale 4| — — No
Client— — sl — New
Source — e — Referral
Posit_statm — == — Neutral
Forml_tend — e — Yes
Partnership — s — Yes
Purch_dept — = — Yes
Competitors — — — Yes
Seller - s — Seller 9
Product — . — Product B
—éO l —:l?r(] l —1| 0 (l) 1|0 2|0 3|0 4|D 5|0
method IME

p(Status=Won) = 0.38; true Status=Won

@-
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B2B: what if
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What-if case, Status = Won
instance: new, model: rf

Att_t2UTEAe ategegue
Needs_def — — Yes
Deal_type — — Project
Up_sale — — No
Cross_sale — — No
Strat_deal — Average important
Scope — — Clear
Client — — New
Source — 'ﬁ — Event
Posit_statm — — Neutral
Growth — — Stable
RFP — — Yes
RFI — i — Yes
Forml_tend — : — No
Budgt_alloc — — Unknown
Partnership — — No
Purch_dept — No
Competitors — — No
Comp_size — — Mid
Authority — — Mid
Seller — Seller 1
Product — — Product E
| I I I I I I I I I |
-50 -30 -10 10 30 50
method IME

p(Status=Won) = 0.29; true Status=0Open
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B2B: change of distribution

Acquisition of new clients, Status = Won
model: rf

attributes/values
Attt client —
Needs_def —
Deal _type —
Up_sale —
Cross_sale —
Strat_deal —
Scope —
Event —
Source —
Posit_statm —
Growth —
RFP —
RFI —
Forml_tend —
Budgt_alloc —
Yes —
Partnership —
Purch_dept —
Competitors —
Comp_size —
Authority —
Seller —
Product | —
Product F — |
Product D — |
Product C — |
Product — T

method IME
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Lessons learned in B2B

e an effort needed to overcome the users’ resistance

 human-in-the-loop is necessary to train, discuss, clean data, introduce
explanations

* with an increased use, users gain trust in the methodology
* human mental models tend to be biased
* joint interactive approach beats both humans and ML models
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O Original data
O  Sampled data

* Poor sampling in explanation 60
approaches makes them

vulnerable ol ’
 Example: PCA based 20l 09
visualization of a part of the * o
COMPAS dataset; the red dots ~ °| o
were generated by LIME | P
40 |
-60

-200 -100 0 100 200 300 400




Erre=a Dicselgate attacks on explanations

Adversarial model

Was x sampled for
explanation?

Yes

Unbiased
model

 Defence: better sampling

Domen Vre§ and Marko Robnik-Sikonja, 2021. Better sampling in explanation methods can prevent dieselgate-like deception. arXiv preprint arXiv:2101.11702. .



Opportunities

* better and more focused sampling

* better local explanation models

* interactions: detect and describe

* sequences: the order of attributes is important!

* images: decison areas, super-pixels

* better visualizations: human cognitive limitations

e explanations is also domain specific, we need explanation
datasets



Conclusions

* many successful mechanistic explanation approaches, mostly for tabular
classification problems

e LLMs are trained to explain their behavior for particular important problems

lots of opportunities for improvements

* even human explanations are not necessarily comprehensible

* humans often explain by providing background or additional knowledge
* legal and practical need for explanations of ML models

- GET ALL THE
INFORMATION You CAN,
WEe'LL THINK ¢F A -

USe FoR (T LHTER.J

HAGAR the Horrible * 8y Dik Brawne

Q
¥
A
r
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Reinforcement learning

Internal state Q\r E eward
l environment
action [5 —

learning rate o
inverse temperature 3
discount rate y

observation

Prof Dr Marko Robnik-Sikonja
Intelligent Systems, Edition 2024
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e R. S. Sutton and A. G. Barto: Reinforcement Learning: An
Introduction, 2018, 2" edition (the book is freely available)

* many papers, tutorials, online courses
* recently a revival due to deep reinforcement learning

some slides are courtesy of Andrew Barto, Peter Bodik and Lisa
Torrey



Machine Learning

* Classification:
* Given
* Training data
* Learn
* A model for making a single prediction or decision

new

Training Data

(X]_I y]_)
(X5, ¥5) Classification
(X3, V3) Algorithm

ynew



Animal/Human Learning

Classification

OO

Other?

Memorization

O—©

Procedural

| 1




Procedural Learning

*Learning how to act to accomplish goals

*Given
* Environment that contains rewards

*Learn
* A policy for acting

*Important differences from classification
*You don’t get examples of correct answers
*You have to try things in order to learn



A Good Policy



Introduction to Reinforcement Learning

* Reinforcement learning (RL), questionable terminology
stemming from behavioristic psychology (behavior
reinforcement)

* Agent learning in the environment, performing actions

 Getting feedback from the environment (award,
punishment), not necessary immediately

* Trying to learn a policy leading to goals

* An example: playing a game without knowing the rules; after
1000 moves an opponent declares: you lost.



Agent

*Temporally situated

®Continual learning and planning
®Objective is to affect the environment
®*Environment is stochastic and uncertain

Environment




What is Reinforcement Learning?

* Learning from interaction

* Goal-oriented learning: short term and possible long term
awards

* Learning about, from, and while interacting with an external
environment

* Learning what to do—how to map situations to actions—so
as to maximize a numerical reward signal

* Agent discovers which action in what circumstances give the
highest award

* Agent can build a model of its environment

* RLis not supervised learning, it is about trial and error
search, exploring, getting information from environment



Supervised Learning

Training Info = desired (target) outputs

}

S 1sed L I
nputs P> upewéssste;lammg > Outputs

Error = (target output — actual output)



Reinforcement Learning

Training Info = evaluations (“rewards” / “penalties™)

}

mputs EEPP .o, > Outputs (“actions”)

Objective: get as much reward as possible



Key Features of RL

e Learner is not told which actions to take
* Trial-and-error search

* Possibility of delayed reward
e Sacrifice short-term gains for greater long-term gains

* The need to explore and exploit

* Considers the whole problem of a goal-directed
agent interacting with an uncertain environment



RL successful applications

* Robocup Soccer

* Financial asset management/Inventory
management

* Dynamic Channel assignment in mobile
communications

* Controlling elevators, industrial controllers,
robots ...

* Robots: navigation, grasping, moving ...

 Games: backgammon (TD-Gammon,
Jellyfish), Go (AlphaGo in combination with
deep neural networks), Atari video games,
poker, chess

 in LLMs used in RLHF



Example video: Atari game Breakout




Example video:Robot training

Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, Sergey Levine. Learning to Walk via Deep Reinforcement Learning.
Robotics: Science and Systems (RSS). 2019.



Components of RL
1/2

Model of
environment

* Policy: what to do?

* Defines agents choices and actions
in a given time

* Represented with rules, table, neural networks etc.
* Result of search, planning, stochastic, etc.

* Reward: what is good?
* Feedback from environment, agent tries to maximize it



Components of RL
2/2

Model of
environment

 Value: internal representation of what is good, it predicts reward
» Agent’s expectation of what can be expected in given state (long-term)
* Implicitly contains evaluation of next states
* Value has to be learned; use repetitions and sampling to estimate the value

* Model: what follows what
* Internal representation of the environment
* Agent can evaluate values and actions without performing them
* Optional component



Agent from the point of view of RL

memory

reward

external sensations

sensations

actions



An Example: Tic-Tac-Toe

AN A

Assume an imperfect opponent:
—he/she sometimes makes mistakes

(0]

-
AN A
ANRS

X X X X X X X X
X 0| X O| X (@) (@) @)
O O @) @) X
} x’s move
} 0’s move

\ } X’s move

} 0’s move

} X’s move



An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:

State V(s) — estimated probability of winning
5 ?
5 ?

2. Now play lots of games.
To pick our moves,
look ahead one step:

0 loss current state
: Om various possible

0 draw % next states

1 win

<' Just pick the next state with the highest
estimated prob. of winning — the largest V(s);
a greedy move.

But 10% of the time pick a move at random;
an exploratory move.



RL Learning Rule for Tic-Tac-Toe

Starting Position

Opponent's Move {
Our Move {
Opponent's Move {

Our Move { - “Exploratory” move
Opponent's Move {
Our Move { s — the state before our greedy move
s’ — the state after our greedy move

We increment each V(s) toward V(s') — a backup:

V(s)<V(s)+a[V(s")-V(s)]

a small positive fraction, e.g, a=.1

the step - size parameter



How can we improve this TTT player?

* Take advantage of symmetries
* representation/generalization
 How might this backfire?

* Do we need “random” moves? Why?
* Do we always need a full 10%?

 Can we learn from “random” moves?

* Can we learn offline?
* Pre-training from self play?
* Using learned models of opponent?



E.g., generalization

Table Generalizing Function Approximator
State \Y State \Y

S
S,
S3

Train
here

A 4
A 4

A 4




E.g., generalization

Table Generalizing Function Approximator
State \Y State \Y

S
S,
S3

Train
here

A 4
A 4

A 4




Tic-Tac-Toe is just a toy example

* Finite, small number of states

* One-step look-ahead is always possible

* State completely observable

*

RL is not limited to a finite number of states; in problems with
infinite or very large number of states we only generate states
encountered during search

RL is not limited to games or opponent’s response



The Agent-Environment Interface

__,[ Agent
;?ward 2?ti0n
i_‘ Feer |
:dst_fl Environment

Agent and environment interact at discrete time steps: ¢=0,1, 2, ...

Agent observes state at stepz: s, €85
produces action at stept: a, € A(s,)

getsresultingreward: 7., €R

and resultingnext state: s, ,

4 r 4
—l Sy a I Hl!StJrla[Hi t+2!5t+2 at+j t+3!St+3a[—+3' o

26




The Agent Learns a Policy

Policyat step 7, 7, :
a mapping from states to action probabilities

7, (s, a) = probability thata, = a when s, = s

* Reinforcement learning methods specify how the agent changes its
policy as a result of experience.

* Roughly, the agent’s goal is to get as much reward as it can over the
long run.

27



Getting the degree of abstraction right

* Time steps need not refer to fixed intervals of real time.

 Actions can be low level (e.g., voltages to motors), or high
level (e.g., accept a job offer), “mental” (e.g., shift in focus
of attention),

* States can be low-level “sensations”, or they can be
abstract, symbolic, based on memory, or subjective (e.g.,
the state of being “surprised” or “lost”).

* An RL agent is not like a whole animal or robot.

* Reward computation is in the agent’s environment because
the agent cannot change it arbitrarily.

* The environment is not necessarily unknown to the agent,
only incompletely controllable.

28



Goals and Rewards

*|s a scalar reward signal an adequate notion of a
goal?—maybe not, but it is surprisingly flexible.

* A goal should specify what we want to achieve, not
how we want to achieve it.

* A goal must be outside the agent’s direct control—
thus outside the agent.

* The agent must be able to measure success:
 explicitly;
* frequently during its lifespan.

29



Robot in a room

actions: UP, DOWN, LEFT, RIGHT
+1

UP
-1 80% move UP

10% move LEFT

10% move RIGHT

START
reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step
* states
* actions
* rewards

e what is the solution?



Is this a solution?

A

f. -1

*

 only if actions deterministic
* not in this case (actions are stochastic)

* solution/policy
* mapping from each state to an action




Optimal policy

- | = =
t It
AR

*




Reward for each step -2

A A A
3 E3E
- = = 4




Reward for each step: -0.1

-1

- | =) |-
t It

2 = b




Reward for each step: -0.04

+1

-
*

-> | =
T
- - -

*




Reward for each step: -0.01

-> -> |
)

-

-)
- ]

*




Reward for each step: +0.01
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-
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Returns

Suppose the sequence of rewards after step z1is:

7;+19rt+29];+39

What do we want to maximize?

In general,

we want to maximize the expected return, E£{R, }, for each stepz.

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

R =r  +r , ++r,

r+1 r+2

where 7 1s a final time step at which a terminal state 1s reached,
ending an episode.

38



Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.

Discounted return:

0 0]
— 2 e o o = k
Rr_l/;+1+7/rt+2+7/ 7;+3+ _27/ Vv ka1
k=0

where 7,0 <y <1, 1s the discount rate.

shortsighted 0« y — 1 farsighted

39



An example: cart and pole

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of

track.
—_ L —

As an episodic task where episode ends upon failure:
reward = +1 for each step before failure

= return = number of steps before failure

As a continuing task with discounted return:
reward = —1 upon failure; 0 otherwise

= return = —y*, for k steps before failure

In either case, return 1s maximized by
avolding failure for as long as possible.

40



Another Example

Get to the top of the hill
as quickly as possible.

reward = —1 for each step where notat top of hill

— return = —number of steps before reaching top ofhill

Return 1s maximized by minimizing
number of steps to reach the top of the hill.

41
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A Unified Notation

* In episodic tasks, we number the time steps of each episode starting from
zero.

* We usually do not have to distinguish between episodes, so we write s,
instead of s, ; for the state at step t of episode j.

* Think of each episode as ending in an absorbing state that always produces
reward of zero:

n=+1 =+l ~ =+

* We can cover all cases by writing

C k
Rt = 27 r-t+k+1’
k=0

where ¥ can belonly if a zero reward absorbing state is always reached.



Episodic task — finite horizon

* In time t, the agent is interested in h further states
* Rewards in that time are r.,, M0 Musr -+ Man
Rt =rt+1 + rt+2 + rt+3 t...t rt+h

* The agent maximizes expected reward in that period

h
max E(R)=maxE() r,,)
k=1



Finite horizon

* Two optimal behaviors

* h-step optimal action: on step 1, do an action which is optimal under
assumption that h-1 actions will follow, on step 2 do an action which
is optimal under assumption that h-2 actions will follow ...

 h-step receding action: on each step do an action which is optimal
under assumption that h actions will follow

* Limited look-ahead
e Suitability of finite horizon: episodic missions (e.g., labyrinth)



Continuous tasks

* No natural end, but ...

... hearer actions are more important than more distant
ones

* Agent optimizes infinite sequence of rewards
* Rewards are geometrically discounted
e rewards: R, = r + Yl + ¥2ly3 + Ply .. for 0<y<1

* v (discount factor) can be interpreted as interest rate, a
trick to bound an infinite sum, probability of surviving
another step, short/far-sightedness

maXE(Zykrt+k+l)’ O<7/<1
k=0



Average reward model

* Agent optimizes long-term average reward

* Downside: does not know the difference between near and
distant rewards



An example: rewards

1. finite horizont, h=¢4
2. infinite horizont, y=0.9
3. average expected reward

\, t+1

() 2
oNe

OO O—(P
O—+O—+O—+O—+O—C)



The Markov Property

* By “the state” at step t, we mean whatever information
is available to the agent at step t about its environment.

* The state can include immediate “sensations,” highly
processed sensations, and structures built up over time
from sequences of sensations.

* |deally, a state should summarize past sensations so as
to retain all “essential” information, i.e. it should have
the Markov Property:

Pr{s =s',r

t+1 >t +1 :I"l Sty Si_1,d '97/19S09a0}:

At S e Bl B £

— o —
Pr{StH =S8,ha = I”l St9at}

, .
for all s’, r, and histories s, ,a,,7,s,_,,a,_,,...,1;,8,,4,-
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Markov Decision Processes

* If a reinforcement learning task has the Markov Property, it is
basically a Markov Decision Process (MDP).

e |f state and action sets are finite, it is a finite MDP.

* To define a finite MDP, you need to give:
e state and action sets
* one-step “dynamics” defined by transition probabilities:

P =Pr{s,,,=s'|s,=s,a,=a} foralls,s’ € S,ae A(s).

* reward probabilities:

RS, =E{r., s, =s,a,=a,s,, = s'} foralls,s’ e S,a e A(s).
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An Example of Finite MDP

Recycling Robot

* At each step, robot has to decide whether it should
(1) actively search for a can, (2) wait for someone to
bring it a can, or (3) go to home base and recharge.

* Searching is better but runs down the battery; if runs

out of power while searching, has to be rescued
(which is bad).

* Decisions made on basis of current energy level:
high, 1ow.

* Reward = number of cans collected

50



Recycling Robot MDP

§ = {high, low} R°***°" = expected no. of cans while searching
A(high) = {search, wait | R"** = expected no. of cans while waiting
A(low) = {search,wait, recharge} RES2TR S RVRES

B, -3

1, Rvait

search

| B, R search

1, 0 recharge

h
a, R search o, R searc
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Value Functions

* The value of a state is the expected return starting
from that state; depends on the agent’s policy:

State - value function for policy 7 :

= E AR s =} Bl s =)
k=0

* The value of taking an action in a state under policy
7 is the expected return starting from that state,
taking that action, and thereafter following = :

Action - value function for policy 7 :

Q" (s,a) = Eﬁ{Rtl s, =85,a, =a}= E”{Zykmkﬂ | S, = 85,4, =a}
k=0
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Bellman Equation for policy &

The basic 1dea:
R =r, + + Y Y
t+1 7/t+2 7/ t+3 7/ t+4
2
t+1+7/(t+2+7/t+3+7/ 7/;+4.”)
+ 7R

t+1 t+1

So: Vi(s)=E, {R,l S, ZS}
= E;z %tﬂ + 7/V](Sz+1)‘gt = S}

Or, without the expectation operator:

V(s)= D m(s,a) 2 PL[RL + yV 7 (s)]
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More on the Bellman Equation

V7 (s)= D m(s,a) ) P[RS, + V7 (s)]

This 1s a set of equations (in fact, linear), one for each state.
The value function for 7 1s its unique solution.

Backup diagrams:
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Gridworld

e Actions: north, south, east, west; deterministic.
* If it would take agent off the grid: no move but reward = -1

* Other actions produce reward = 0, except actions that move agent
out of special states A and B, as shown.

Al |B

\ +5

« o <_I_.
A ’/ Actions

(a)
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Gridworld

e Actions: north, south, east, west; deterministic.
* If would take agent off the grid: no move but reward = -1

* Other actions produce reward = 0, except actions that move agent
out of special states A and B as shown.

Ayl B
\ +5
no) B’ <—I—>
/
X T/ Actions
(a)

3.3

8.8

4.4

5.3

1.5

1.5

3.0

2.3

1.9

0.1

0.7

0.7

0.4

-0.4

-1.0

-0.4

-0.4

-0.6

-1.2

-1.9

-1.3

-1.2

-1.4

-2.0

(b)

State-value function
for equiprobable
random policy;
v=10.9
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Optimal Value Functions

* For finite MDPs, policies can be partially ordered:

z>7n' ifandonlyif V' (s)=V" (s) foralls €S
* There are always one or more policies that are better than or

equal to all the others. These are the optimal policies. We
denote them all 7 *.

* Optimal policies share the same optimal state-value function:

* Optimal policies also share the same optimal action-value

function:
V'(s)=max V"(s) forall s €S

O (s,a)=max Q" (s,a) forall s eSanda € A(s)

This is the expected return for taking action a in state s
and thereafter following an optimal policy.
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Bellman Optimality Equation for V*

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

V7(s)= max Q" (S Q)

acA(s)

= max £ Yin + 7/V (St+1)‘St =54, = Cl}
acA(s)

= max ZP“ [R" + V(s )]

acA(s)

(8) £

The relevant backup diagram:

V'is the unique solution of this system of nonlinear equations.
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Bellman Optimality Equation for Q*

Q(S a) E 3 t+1+7/nla£rlXQ*(St+19 ’ StZS,CIZICI

ZP“ [R“ + )/mng*(S’,a’)]

\
J

(D)

The relevant backup diagram:

O is the unique solution of this system of nonlinear equations.
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Why Optimal State-Value Functions are Useful

Any policy that 1s greedy with respect to V' is an optimal policy.

Therefore, given Vf one-step-ahead search produces the
long-term optimal actions.

E.g., back to the gridworld:

A.\ B 22.0/24.4/22.0/19.4/17.5 — <::> ‘- 4—1—» —

+6 19.8/22.0{19.817.8/16.0 (IR PR

A0 | B' 17.8(19.8/17.8/16.0/14.4 [ B P O

/ 16.0[17.8/16.0[14.4/13.0 Ly R P P |

A"f 14.4016.0114.413.0/11.7 LR O O
a) gridworld b) V* c) #*
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What About Optimal Action-Value Functions?

Given ¢ , the agent does not even
have to do a one-step-ahead search:

7 ()= arg R (s,a)

61



Solving the Bellman Optimality Equation

* Finding an optimal policy by solving the Bellman optimality
equation requires the following:
 accurate knowledge of environment dynamics;
* enough space and time to do the computation;
* the Markov property.

* How much space and time do we need?

* polynomial in number of states (via dynamic programming
methods),

* BUT, number of states is often huge (e.g., backgammon has about
1020 states).

* We usually have to settle for approximations.

* Many RL methods can be understood as approximately
solving the Bellman optimality equation.
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Dynamic programming

*main idea

* use value functions to structure the search for good
policies
* need a perfect model of the environment

*two main components

g * policy evaluation: compute V™ from ©t 5
* policy improvement: improve 1t based on V"

e start with an arbitrary policy
* repeat evaluation/improvement until convergence



Policy evaluation/improvement

* policy evaluation: w -> V©
* Bellman eqgn’s define a system of n egn’s
e could solve, but will use iterative version

Vis1(8) = 2o (s, a) 2si Bsi [TSC;’ + ¥V (s')]

e start with an arbitrary value function V,, iterate until V, converges

* policy improvement: V* -> 1’
7' (s) = arg max Q" (s, a)

= arg maaxz PZ, [TZS, + nyW(s/)}
/

S

e 1 either strictly better than =&, or ' is optimal (if © = n’)



Policy/Value iteration

* Policy iteration
0 _ b V70 1 T _ B VTl _>I.” I ¥ _E Vv

* two nested iterations; too slow
e don’t need to converge to V7
* just move towards it

e Value iteration
Vig1(s) = maaxz P2, [r?s/ + nyk(S/)]
S/

* use Bellman optimality equation as an update
e converges to V*



Using dynamic programming

* need complete model of the environment and rewards

* robot in a room
* state space, action space, transition model

* can we use DP to solve
* robot in a room?
* backgammon?
* helicopter?
* DP bootstraps
* updates estimates on the basis of other estimates



Monte Carlo methods

* don’t need full knowledge of environment
* just experience, or
* simulated experience

* averaging sample returns
 defined only for episodic tasks

* but similar to DP
* policy evaluation, policy improvement



Monte Carlo policy evaluation

e want to estimate V*(s)

e first-visit MC

= expected return starting from s and following &
» estimate as average of observed returns in state s

 average returns following the first visit to state s

S O—o—0—o ; —@—o : —o—o—0—o0—0—o—1 R((s) = +2
+ - 0 + -3 +5

Sg —— —— —0— —0— —O0— —O0— —O0— —O0—

S, O——0——0—0—0—0—0—0—0—0—0—0—0—0—1 R,(s) = +1

5o O——@——0——0——0—0—0—0—0—0—0—0—1 R;(s) = -5

S O—0—0—0—0—0—0—0—0—0—0—0—0—0— 011

s, 0—0—0——0——0—0—0—o—0—9—0—0—0—o—H R =+4

Vr(s) = (2+1-5+4)/4=0.5



Monte Carlo control

* V™ not enough for policy improvement
* need exact model of environment

7' (s) = arg max Q" (s, a)

estimate Q7(s,a)

MC control

7T()—>EQ7TO—>I7T1—>EQ7T1 _>I”.

* update after each episode

non-stationary environment
V(s) = V(s)+a[R—-V(s)]

a problem
» greedy policy won’t explore all actions



Maintaining exploration

 keyingredient of RL

* deterministic/greedy policy won’t explore all actions
 don’t know anything about the environment at the beginning
* need to try all actions to find the optimal one

 maintain exploration
e use soft policies instead: m(s,a)>0 (for all s,a)

 ¢-greedy policy
with probability 1-€ perform the optimal/greedy action
with probability € perform a random action

will keep exploring the environment
slowly move it towards greedy policy: € -> 0



Simulated experience

* 5-card draw poker
© S A%, Ae, 68, AV, 24
* a,: discard 64, 24
°*s;:As%, Ae, AV, AN, 94 + dealer takes 4 cards
* return: +1 (probably)

* DP
* |list all states, actions, compute P(s,a,s’)
* P([A&%,Ae,608,A9,240],[6M,24],[AN,94,4])=0.00192

* MC
* all you need are sample episodes
* let MC play against a random policy, or itself, or another algorithm



Summary of Monte Carlo

* don’t need model of environment
 averaging of sample returns
 only for episodic tasks

* learn from:
* sample episodes
* simulated experience

* can concentrate on “important” states
e don’t need a full sweep

* no bootstrapping
* less harmed by violation of Markov property

* need to maintain exploration
* use soft policies



Value Iteration

void valuelteration() {
initialize V(s) arbitrarily
dof
foreach (s €5) {
foreach (g €A){
Q(s,a) = R(s,a)+y 2. T(s,a,s")V(s')
V(s) = max,Q(s,a)
}
}
} while (! policy good enough ) ;
}

Algorithm updates values backwards (from final states)



Value iteration: convergence

* Theorem: If the maximum difference between two
successive value functions is less than g, then the value of
the greedy policy, (the policy obtained by choosing, in every
state, the action that maximizes the estimated discounted
reward, using the current estimate of the value function)
differs from the value function of the optimal policy by no
more than 2e y/(1-y ) at any state.

* An effective stopping criterion for the algorithm

* Value iteration is very flexible. The assignments to V need
not be done in strict order but instead can occur
asynchronously in parallel, provided that the value of every
state gets updated infinitely often on an infinite run.



Policy iteration

choose an arbitrary policy #’

loop

— —1
i

[
compute the value function of policy w:
solve the linear equatilons
Vels) = R(s,7(5)) + 7 Tues T(s,7(5), ) Va(s)
improve the policy at each state:

7'(s) i= argmax, (R(s,a) + 7Y ges T(s, a, $YVa(s))

until 7m = 7’

The value function of a policy is just the expected infinite discounted reward that
will be gained, at each state, by executing that policy. It can be determined by
solving a set of linear equations. Once we know the value of each state under the
current policy, we consider whether the value could be improved by changing the
first action taken. If it can, we change the policy to take the new action whenever
it is in that situation. This step is guaranteed to strictly improve the performance

of the policy. When no improvements are possible, then the policy is guaranteed
to be optimal.



Approximate solutions

* Learning with time differences (TD),
a model is not needed, incremental, difficult for analysis

* Dynamic programming,
mathematically well defined problems with exact and
complete description of the environment

 Monte Carlo methods,
model is not necessary, conceptually simple, not
incremental, sampling complete trajectories in interaction
with environment (or model of environment)

* Efficiency, convergence



TD(A) learning

* Learning with time differences

* Previous states receive a portion of the difference to
SUCCeSsSors

e For A=0
V(s,) = V(s,) + c( V(s,1)- V(s,) )

* Cis a parameter, slowly decreasing during learning assuring
convergence

* For A > 0, more than just immediate successors are taken
into account (speed)



Temporal Difference Learning

e combines ideas from MC and DP

* like MC: learn directly from experience (don’t need a model)
* like DP: bootstrap
» works for continuous tasks, usually faster then MC

e constant-alpha MC:
* have to wait until the end of episode to update

V(St)<—V(st)—|—ozl[ﬂl— V(st)] —— —— —— ——

* simplest TD \ target

* update after every step, based on the Successor

V(s) = V(s +alrpr + VD) - V)] e—es



MC vs. TD

* observed the following 8 episodes:
A-0,B-0 B-1 B-—1 B-1
B-1 B-1 B-1 B-0

* MC and TD agree on V(B) = 3/4

« MC: V(A) =0

e converges to values that minimize the error on training data

« TD: V(A) = 3/4
* converges to ML estimate
of the Markov process




Q-learning

* previous algorithms: on-policy algorithms

e start with a random policy, iteratively improve
* converge to optimal

* Q-learning: off-policy

e use any policy to estimate Q
Q(st,at) — Q(s¢,a) ["“t—|—1 + v maxQ(si41,a) — Q(st, at)]

e Qdirectly approximates Q* (Bellman optimality eqn)
* independent of the policy being followed
* only requirement: keep updating each (s,a) pair

e Sarsa

Q(st,at) +— Q(s¢t,a¢)+a [Tt + YQ(S¢41, ar41) — Q(s¢, at)]



Q learning

* Watkins, 1989
* The most popular variant of time difference learning
* One step ahead

Q(s,,a,) = (1-c) Q(s,,a,) + c(ry,+ vy max, Q(s,,a) - Qls,,a,))
O<=cv<=1

S.d

max



Q-Learning: Definitions

Markov property:
this is independent

* Current state: s

e Current action: a of previous states
given current state

J

* Transition function: (s, a)=s

In classification we’d
have examples
(s, (s)) to learn

e Reward function: r(s, a) ¢R

from

* Policy t(s) = a

* Q(s, a) = value of taking action a from state s



The Q-function

*Q(s, a) estimates the discounted cumulative reward
* Starting in state s
* Taking action a
* Following the current policy thereafter

* Suppose we have the optimal Q-function
* What’s the optimal policy in state s?
* The action argmax, Q(s, b)

* But we don’t have the optimal Q-function at first
e Let’sact as if we do
* And updates it after each step so it’s closer to optimal
* Eventually it will be optimall!



Q-Learning: The Procedure

&(s4, a4) = s,
Sy, A4

Environment



Q-Learning: Updates

The basic update equation

Q(s,a) «——r(s,a)+ max, Q(s',b)

With a discount factor to give later rewards less impact

Q(s,a)«——r(s,a)+ymax, Q(s',b)

With a learning rate for non-deterministic worlds

Q(s,a) «—1-a]Q(s,a) + a[r(s,a) + y max, Q(s',b)]



Q-Learning: Update Example

1 2
8

3

10

Q(5111a—>) — %



Q-Learning: Update Example

1 2 3

10

Q(Sg,a¢)=0—|—7/%



Q-Learning: Update Example

1

2

3

Q(ss,a,) :O+7/2%



The Need for Exploration

Explore!

argmax Q(s,,a) =<«
best=—



Q learning

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from @ (e.g., e-greedy)
Take action a, observe 7, s’
Q(s,a) «— Q(s,a) + afr + ymaxy Q(s',a") — Q(s, a)]
s «— s

until s is terminal




Explore/Exploit Tradeoff

e Can’t always choose the action with highest Q-value
* The Q-function is initially unreliable
* Need to explore until it is optimal

* Most common method: e-greedy
* Take a random action in a small fraction of steps (€)
* Decay € over time

*There is some work on optimizing exploration
e Kearns & Singh, ML 1998
* But people usually use this simple method



Q-Learning: Convergence

* Under certain conditions, Q-learning will converge to the
correct Q-function

* The environment model doesn’t change

e States and actions are finite

e Rewards are bounded

* Learning rate decays with visits to state-action pairs

e Exploration method would guarantee infinite visits to every
state-action pair over an infinite training period



Deep Q learning

State

<
EE

Q* learning

Deep Q
Neural network

@

Deep Q* learning

Q value

Q value action 1

Q value action 2

Q value action 3



Extensions: SARSA

SARSA: Take exploration into account in updates
e Use the action actually chosen in updates

Q(s,a)«——r(s,a)+Q(s',a')

Regular: =—

SARSA:  l>—

m




Sarsa

 again, need Q(s,a), not just V(s)

D e

Q(st,at) «— Q(s¢t,a¢)+a [Tt + YQ(S¢41, ar41) — Q(sy, at)]

Sua i —

rt+1

e control
* start with a random policy
* update Q and = after each step
 again, need g-soft policies



Extensions: Look-ahead

Look-ahead: do updates over multiple states
e Use some episodic memory to speed credit assignment

Q(s,a)«——r(s,a)+ (s, a')+7°Q(s",a")

* TD(A): a weighted combination of look-ahead distances
* The parameter A controls the weighting



Extensions: Eligibility Traces

* Eligibility traces: Lookahead with less memory
* Visiting a state leaves a trace that decays
* Update multiple states at once
 States get credit according to their trace




Extensions: Options and Hierarchies

* Options: Create higher-level actions
—
» Hierarchical RL: Design a tree of RL tasks

Whole Maze

S




Extensions: Function Approximation

* Function approximation: allow complex environments
* The Q-function table could be too big (or infinitely big!)

CRN)

* Describe a state by a feature vector

f=(f1, 20 s o)

* Then the Q-function can be any regression model
e E.g. linear regression:
Qfs,a)=w;f; +w,f, +..+w,f,

©

* Cost: convergence goes away in theory, though often not in practice
* Benefit: generalization over similar states

 Easiest if the approximator can be updated incrementally, like neural
networks with gradient descent, but you can also do this in batches



Measuring learning performance

* Eventual convergence to optimality
Many algorithms come with a provable guarantee of asymptotic
convergence to optimal behavior. This is reassuring, but useless
in practical terms.

* Speed of convergence to optimality
Optimality is usually an asymptotic result, and so convergence
speed is an ill-defined measure. More practical are
* speed of convergence to near-optimality (how near?)
* level of performance after a given time (what time?)

* Regret
expected decrease in reward gained due to executing the
learning algorithm instead of behaving optimally from the very
beginning; these results are hard to obtain.



Challenges in Reinforcement Learning

* Feature/reward design can be very involved
* Online learning (no time for tuning)
* Continuous features (handled by tiling)
* Delayed rewards (handled by shaping)

* Parameters can have large effects on learning speed
* Tuning has just one effect: slowing it down

* Realistic environments can have partial observability
* Realistic environments can be non-stationary
* There may be multiple agents



Do Brains Perform RL?

* Should machine learning researchers care?

* Planes don’t fly the way birds do; should machines learn the way people
do?
e But why not look for inspiration?

* Psychological research does show neuron activity associated
with rewards
* Really prediction error: actual — expected
* Primarily in the striatum



What People Do Better

* Parallelism
* Separate systems for positive/negative errors
* Multiple algorithms running simultaneously

* Use of RL in combination with other systems
* Planning: Reasoning about why things do or don’t work
e Advice: Someone to imitate or correct us
* Transfer: Knowledge about similar tasks

* More impulsivity
* Is this necessarily better?
* The goal for machine learning: Take inspiration

from humans without being limited by their
shortcomings



Some examples and details



An example: directing robot in 2d plane

OBSTACLE GOAL

Angle to goal

* G.A.Rummery: Problem Solving with Reinforcement Learning, 1995



Robot in 2d: the settings

®*Sensors:

* five distance measures to nearest obstacle in 15 degree
forward arc

* always knows distance and angle to the goal

 payoff after the end of the trial (reaching goal,
collision with an obstacle or time out)

e start, goal and obstacles are randomly changed
after every trial

*robot has to learn a generalized reactive policy;
how?



Robot in 2d: actions and rewards

* 6 actions:
* (turn left 15°, turn right 15°, stay in the same direction) x (move
forward for a fixed distance d, do not move)
* rewards:

* 0 in every step except the final
 goal: if in a small fixed radius around the goal, +1

2dgoa
* crash: based on a distance d from the goal e.g. 0.5 exp(— - g l),

max

(note: maximum is 0.5)
 time-out: as for crash + some small reward for not crashing, e.g., +0.3

* set y=0.99 to reward faster findings of the goal
* set probability of exploration/exploitation



Using NN for 2-d robot

e coarse coding the inputs (e.g., with several input
sigmoids for each sensor)

* backpropagation with momentum term or eligibility
traces

* batch and on-line training



Some trajectories of trained robots
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State representation

e pole-balancing
* move car left/right to keep the pole balanced

* state representation
* position and velocity of car
* angle and angular velocity of pole

* what about Markov property?

* would need more info
* noise in sensors, temperature, bending of pole

* solution
 coarse discretization of 4 state variables
* left, center, right
* totally non-Markov, but still works



Designing rewards

robot in a maze
» episodic task, not discounted, +1 when out, 0 for each step

chess
e GOOD: +1 for winning, -1 losing
* BAD: +0.25 for taking opponent’s pieces
* high reward even when lose

rewards
* rewards indicate what we want to accomplish
* NOT how we want to accomplish it

shaping —— —— —— —— —— —— —— —0—

* positive reward often very “far away”
* rewards for achieving subgoals (domain knowledge)
* also: adjust initial policy or initial value function



Reinforcement Learning in Atari

action

Tutorial: Deep Reinforcement Learning
David Silver, Google DeepMind



DQN in Atari

End-to-end learning of values Q(s, a) from pixels s
Input state s is stack of raw pixels from last 4 frames
Output is Q(s, a) for 18 joystick /button positions

v v v Y

Reward is change in score for that step

32 4x4 filters 256 hidden units Fully-connected linear
output layer

16 Bx8 filters

4xB4x84

Stack of 4 previous ' Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Network architecture and hyperparameters fixed across all games
[Mnih et al.]



Ssummary

* Reinforcement learning
* use when need to make decisions in uncertain environment
 actions have delayed effect

* solution methods
e dynamic programming
* need complete model

* Monte Carlo
» time difference learning (Sarsa, Q-learning)

* simple algorithms

* most work
* designing features, state representation, rewards



